Version A

Directions:

To receive partial credit you must show your work on a problem. Circle final answers. All problems are 5 points each.

For $f(x) = x^2$ and g(x) = 2 - x Find the following:

1. (f + g)(x)

2. (f - g)(x)

3. $(f \cdot g)(x)$

4. (f/g)(x)

For $f(x) = x^2 + 1$ and g(x) = x - 4 Find the following:

5. $(f \cdot g)(6)$

6. (f+g)(2)

For $f(x) = \frac{1}{3}x - 3$ and g(x) = 3x + 1 Find the following:

7. $(f \circ g)(x)$

8. $(g \circ f)(12)$

9. $(f \circ f)(x)$

10. $(g \circ g)(2)$

Does the following functions have an inverse? Yes or No. Why?

Show that f(x) = 5x + 1 and $g(x) = \frac{x - 1}{5}$ are inverse functions <u>algebraically</u>. You must show work!

13. Find
$$(f \circ g)(x)$$

14. Find
$$(g \circ f)(x)$$

Find the inverse for the following functions. (Note: you don't have to verify)

15.
$$f(x) = 2x - 3$$

16.
$$f(x) = \frac{x+1}{x-2}$$

For the quadratic function $y = -2x^2 - 12x - 16$ find the following.

For the quadratic function $y = -2x^2 - 12x - 16$ find the following.

19. Graph

20. Domain and Range

<u>**Describe**</u> the transformation that occurs in the function. Remember to find the basic function first. Also sketch the graph.

21.
$$f(x) = -x^4 + 4$$

22.	f(x)	=(x)	$-2)^{3}$	-2
<i></i> ,	$I(\Lambda)$	$-(\Lambda$	4)	

Description:_		

Description:

Answers to Sample Test 4

1. $f(x) = x^2 - x + 2$	2. $f(x) = x^2 + x - 2$
3. $f(x) = x^2(2-x) = 2x^2 - x^3$	$4. \qquad f(x) = \frac{x^2}{2-x}$
5. 74	6. 3
7. $(f \circ g)(x) = x - \frac{8}{3}$	8. 4
9. $(f \circ f)(x) = \frac{1}{9}x - 4$	10. 22
11. Yes, by Horizontal Line Test!	12. No, by Horizontal Line Test!
13. $(f \circ g)(x) = x ? Yes !$	14. $(g \circ f)(x) = x ? Yes !$
15. $f^{-1}(x) = \frac{x+3}{2}$	16. $f^{-1}(x) = \frac{2x+1}{x-1}$
17. vertex: (–3, 2)	18. x - int.: (-4, 0), (-2, 0) y - int.: (0, -16)
19.	20. Domain= (- ,)
-6 -5 -4 -3 -2 -1 -5 -4 0 -15 -20	Range = $\begin{pmatrix} - & ,2 \end{pmatrix}$

Answers to #21 and #22 are on the next page.

Reflection in the x-axis and then a vertical shift four units upward

Horizontal shift two units to the right and a vertical shift two units downward