Version A

Directions:

To receive partial credit you must show your work on a problem. Circle final answers. All problems are 5 points each.

Divide the following polynomials.

1.
$$(2x^2 + 10x + 12) \div (x + 3)$$

Divide the following polynomials.

2.
$$(4x^3 - 7x^2 - 11x + 5) \div (4x + 5)$$

Divide the following polynomials.

3.
$$(5x^3 - 6x^2 + 8) \div (x - 4)$$

Divide the following polynomials.

4.
$$(7x + 3) \div (x + 2)$$

Factor the following polynomial with the given value of x that is a zero.

5.
$$x^3 - 7x + 6$$
 given $x = 2$

Find all the zeros of the function.

6.
$$f(x) = (x + 6)(x + i)(x - i)$$

Find all the possible rational zeros of the function **only**. (#7 and #8)

7.
$$f(x) = x^3 - 6x^2 + 11x - 6$$

8.
$$f(x) = -4x^3 + 15x^2 - 8x - 3$$

Find all the real zeros of the function. (#9 and #10) Show work!

9.
$$f(x) = x^3 - 6x^2 + 11x - 6$$

10.
$$g(y) = 2y^4 + 7y^3 - 26y^2 + 23y - 6$$

Determine if the ordered pair is a solution of the system of equations. (#11 and #12) You must show work!

11.
$$4x - y = 1$$
 $\frac{-1}{2}$, -3 $6x + y = -6$

12.
$$4x - y = 1$$
 $(0,-3)$
 $6x + y = -6$

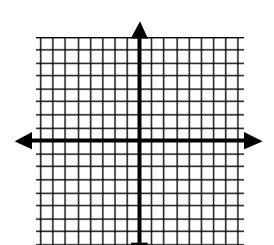
Solve the system of equations by substitution method. Show work!

$$13. \qquad \begin{aligned} x^2 - y &= 0 \\ 2x + y &= 0 \end{aligned}$$

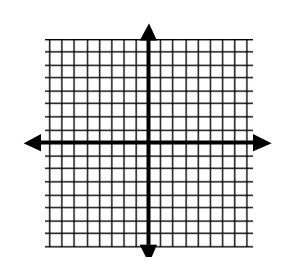
14.
$$x - y = 0$$

$$5x - 3y = 10$$

Solve the system of equations by elimination method. Show work!


15.
$$3x + 2y = 10$$
$$2x + 5y = 3$$

16.
$$x - y = 2$$


$$-2x + 2y = 5$$

Solve the system of equations by graphing method. Draw graphs as accurate as possible.

17.
$$x - y + 3 = 0$$
$$x^{2} - 4x + 7 = y$$

18.
$$7x + 8y = 24$$
$$x - 8y = 8$$

Answers Sample Test 5

1)	2 4	111	37 1
1)	2x + 4	11)	Yes!
2)	$x^2 - 3x + 1$	12)	No!
3)	$5x^2 + 14x + 56 + \frac{232}{x - 4}$	13)	(0,0) and (-2,4)
4)	$7 - \frac{11}{x+2}$	14)	(5,5)
5)	(x-2)(x+3)(x-1)	15)	(4,-1)
6)	x = -6, x = i, x = -i	16)	No solutions
7)	Possible zeros $\pm 1, \pm 2, \pm 3, \pm 6,$	17)	Graphs should cross at: (1,4) and (4,7)
8)	$\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm 3, \pm \frac{3}{2}, \pm \frac{3}{4}$	18)	Graphs should cross at: (4,–1/2)
9)	x = 1, x = 2, x = 3		
10)	$x = 1, \ x = -6, \ x = 1/2$		