§1.5 Complex Numbers

Complex number: a number of the form a + bi, where a and b are real numbers. a is called the <u>REAL</u> part of the complex number a + bi, bi is called the <u>IMAGINARY</u> part of the complex number a + bi.

Imaginary number: a complex number of the form a + bi, where b is nonzero.

Standard Form of a complex number: a + bi or a + ib (Discuss $i\sqrt{5} & \sqrt{5i}$)

Definition of i: $i = \sqrt{-1}$ or $i^2 = -1$

Definition of $\sqrt{-a}$ If a > 0, then $\sqrt{-a} = i\sqrt{a}$ Example: $\sqrt{-16}$

Caution: When working with negative radicands, be sure to use the definition $\sqrt{-a} = i\sqrt{a}$ before using any of the other rules for radicals.

OPERATIONS WITH COMPLEX NUMBERS

Addition or Subtraction of Complex Numbers:

- 1. Combine the real parts.
- 2. Combine the imaginary parts.
- 3. Leave the result in the form a + bi.
- Note: Add (or subtract) the real numbers then add the imaginary numbers.

example 1: a) (-9+7i) + (3-15i) b) (12-5i) - (8-3i)

Multiplication of Complex Numbers:

- 1. Multiply the numbers as if they are two binomials (FOIL METHOD).
- 2. Substitute -1 for i^2
- 3. Combine the like terms and leave the result in the form a + bi.

example 2: a) (2-3i)(3+4i)

b) $(4+3i)^2$

Properties of Complex Conjugates: for real numbers a and b:

$$(a+bi)(a-bi) = a^2 + b^2$$

Division of Complex Numbers:

Write the division as a fraction.
Multiply the numerator and denominator by the conjugate of the denominator:

 a+bi/c+di
 c-di/c-di

Multiply and simplify in the numerator (by FOIL).

 Multiply and simplify in the denominator to a real number (by FOIL).
 Write the result in the form a + bi.

example 3: a) 3+2i/5-i

Powers of i: $i^1 = i$ $i^2 = -1$ $i^3 = -i$ $i^4 = 1$

example 4: a) i^{13} b) i^{56}