Review Section P.1

Notes: on Interval Notation

- Parentheses () indicate that the endpoint <u>is not</u> included in the interval.
- Brackets [] indicate that the endpoint **is** included in the interval.
- Intervals are always open at $\pm \infty$.
- Intervals always have the smallest value on the left and the larger value on the right.

Examples 1 Write in interval notation and graph.

a.) $x \ge -3$ b.) 3 < x < 8 c.) x < 6

Properties of Inequalities - Let a, b and c be real numbers.

1.) a < b and a + c < b + c are equivalent. (addition property)
2.) If c > 0, then a < b and ac < bc are equivalent. (multiplication property)
3.) If c < 0, then a < b and ac > bc are equivalent. (multiplication property) *
Note: Replacing < with >, ≤ or ≥ results in equivalent properties.

* **Note**: <u>When multiplying or dividing both sides of the inequality</u> by a negative <u>number</u>, we must reverse the direction of the <u>inequality symbol</u>.

Linear Inequalities: an inequality that can be written in the form ax + b > 0 where $a \neq 0$. (Note: Any inequality symbol may be used<,>,<,>,)

Use the properties of inequalities to solve linear inequalities by isolating the variable.

Example 2 Solve.

a.)
$$5x - 7 > 3x + 9$$

b.)
$$1 - \frac{3x}{2} \ge x - 4$$

Double Inequalities: Isolate the variable in the middle. Perform operations on each part of the inequality.

Example 3 Solve.

a.) $1 \le 7x - 6 < 4$ b.) $-3 \le 6x - 1 < 3$

Absolute Value Inequalities:

- 1. Solutions of |x| < a are all values of x that lie between -a and a. |x| < a if and only if -a < x < a
- 2. The solutions of |x|> a are all values of x that are less than -a or greater than a.
 |x|> a if and only if x < -a or x > a

These rules are also valid if <, > are replaced by \le , \ge .

Example 4 Solve.

a.) |x-5| < 2 b) $|x+3| \ge 7$