2.1 - 2.3

Directions:

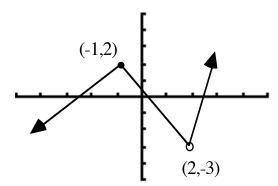
Date ______
To receive partial credit you must show your work on a problem.

<u>Circle final answers</u>. All problems are 5 points each.

- 1. Find the slope of the line passing through (4.8, 3.1) and (-5.2, 1.6).
- 2. Write the equation of the line in slope-intercept form (y = mx + b) that goes through (1, 1) and $\left(6, -\frac{2}{3}\right)$.

- 3. Find the slope-intercept form of the equation of the line passing through (-10,4) and has slope m=0.
- 4. Write the equation of the line in slope-intercept form (y = mx + b) that goes through (2, 1) and is perpendicular to 4x 2y = 3.

5. Is the following relation a function?


 $\{(1,2),(5,7),(3,8),(5,4)\}$

- 6. Evaluate the function at each specified value and simplify. $f(x) = \sqrt{x+8} + 2$
 - a) f(-8)
- b) f(1)

- 7. Evaluate the function at each specified value and simplify. $f(x) = \frac{3x-4}{5}$
 - a) f(2)
- b) f(-3)
- 8. State the Domain for the following:

$$g(x) = \sqrt{x - 10}$$

9. Determine the intervals of the domain over which the given functions is increasing, decreasing, and constant.

Increasing

Decreasing

Constant

10. State the Domain for the following: $f(x) = \frac{2x-5}{3x+7}$

Answers to Sample Quiz

1.	m = 0.15	2.	$y = \frac{-1}{3}x + \frac{4}{3}$
3.	y = 4	4.	$y = \frac{-1}{2}x + 2$
_	NO 4 52		1) 7

5.	NO the 5's repeat!	6.	a) 2	b) 5	
7.	a) 2/5 b) -13/5	8.	[10,∞)		
9.	Inc.= $(-\infty, -1]$ and $(2, \infty)$	10.	$x \neq \frac{-7}{2}$	or	$\left(-\infty, \frac{-7}{2}\right) \cup \left(\frac{-7}{2}, \infty\right)$
	Decr. = $[-1,2)$		3		(3) (3)
	Const = None				