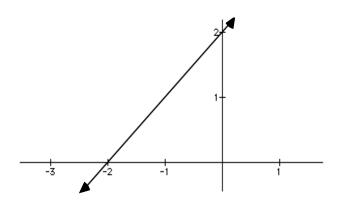
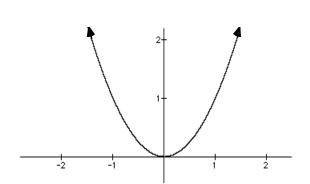
§2.7 Inverse Functions


Example: Let f(x) = 8x and $g(x) = \frac{1}{8}x$


Find f(12) and g(96)? What do you notice about these results?

Horizontal Line Test:

A function f has a inverse function if and only if no horizontal line intersects the graph of f at more than one point.

Example: Do the following graphs of functions have inverses?

Inverse Function

Let f and g be two functions such that:

 $(f \circ g)(x) = x$ for every x in the domain of g,

and $(g \circ f)(x) = x$ for every x in the domain of f.

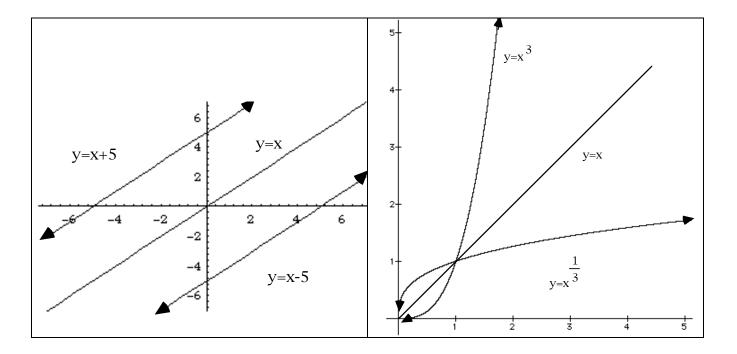
The function g is the **inverse** of the function f and is denoted by $f^{-1}(x)$ where

 $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

Example: Let $f(x) = x^3 - 1$, and let $g(x) = \sqrt[3]{x+1}$. Is g the inverse of f?

Finding the Inverse of a function:

Note: the notation used is: $f^{-1}(x)$


- Verify that f has an inverse by the horizontal line test.
- Replace f(x) with y.
- •Interchange the variables x and y.
- Solve for y and let this "new" $y = f^{-1}(x)$
- Verify that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

Example Find the inverse of the following functions.

a.)
$$f(x) = 2x-1$$
 b.) $f(x) = \frac{4x+6}{5}$

Graphs of Inverses:

(A graph and it's inverse are symmetric with respect to the line y = x.)

