2.1 - 2.7

Unower Ke Date

**Directions:** To receive partial credit you must show your work on a problem.

Circle final answers. All problems are 5 points each.

1. Find the slope of the line passing through

$$(4.8, 3.1) \text{ and } (-5.2, 1.6).$$

$$X_{1} \quad Y_{1} \qquad X_{2} \quad Y_{2}$$

$$M = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}$$

3. Find the slope-intercept form of the equation of the line passing through (-10,4) and has slope m = 0.

5. Is the following relation a function?

7. Evaluate the function at each specified value and simplify.  $f(x) = \frac{3x-4}{5}$ 

a) 
$$f(2)$$

$$f(2) = \frac{3(2)-4}{5}$$

$$f(-3) = \frac{3(-3)-4}{5}$$

b) 
$$f(-3)$$
  
 $f(-3) = 3(-3) + 4$   
 $= -9 - 4$   
 $= -9 - 4$   
 $= -9 - 4$   
 $= -9 - 4$ 

2. Write the equation of the line in slopeintercept form (y = mx + b) that goes through (1, 1) and  $\left(6, -\frac{2}{3}\right)$ .

through (1, 1) and 
$$\left(6, -\frac{2}{3}\right)$$
.  
 $M = \frac{1}{2} \frac{1}{2} \frac{1}{3} = \frac{-\frac{2}{3} - \frac{3}{3}}{5} = \frac{-1}{3}$   
 $V = V_1 = m(X - X_1)$   $2V - 1 = -\frac{1}{3} \times \frac{1}{3}$ 

 $y-y_1 = m(x-x_1)$   $= y-1 = \frac{1}{3}(x-1)$   $= y-\frac{1}{3} = \frac{1}{3} \times \frac{1}{3}$ 

4. Write the equation of the line in slope intercept form (y = mx + b) that goes through (2, 1) and is perpendicular to 4x - 2y = 3.

6. Evaluate the function at each specified

6. Evaluate the function at each specified value and simplify. 
$$f(x) = \sqrt{x+8}+2$$

a)  $f(-8)$ 
b)  $f(1)$ 

$$f(-8) = \sqrt{-8+8}+2$$

$$f(-8) = \sqrt{6}+2$$

8. State the Domain for the following:

(Hint: draw graph first.)

$$g(x) = \sqrt{x-10} \quad \text{graph.}$$

$$from Looking at the graph.$$

9. Determine the intervals of the domain over which the given functions is increasing, decreasing, and constant.



Increasing



Constant



10. Is the following graph a function?

(Yes)or No



12. Write an equation for the function that is described as follows:

The shape of f(x) = |x| but moved 10 units up and reflected over the x-axis.



11. State the Domain and Range for the following graph:



13. Write an equation for the function that is described as follows:

The shape of  $f(x) = x^3$  but moved 6 units to the left, and 6 units down.

Answer:  $\left[f(x) - (x+b)^3 - b\right]V$ 

14. Describe the transformation that occurs in the function. Remember to find the basic function first.

Also sketch the graph.

$$f(x) = (x-1)^3 + 2$$
 basic function

Description:





For  $f(x) = x^2$  and g(x) = 2 - x Find the following:

15. 
$$(f+g)(x) = f(x) + g(x)$$
$$= \sqrt{x^2 + 2 - x} \sqrt{x^2 + 2 - x}$$

17. 
$$(f \cdot g)(x) = f(x) \cdot g(x)$$
$$= \chi^{2}(2-x) = 2x^{2}-x^{3} \sqrt{x}$$

16. 
$$(f-g)(x) = f(x) - g(x)$$

$$= \chi^{2} - (2 - \chi)$$

$$= \chi^{2} - 2 + \chi = \chi^{2} + \chi - 2$$

18. 
$$(f/g)(x) = \frac{f(x)}{g(x)} = \boxed{x^2}$$

For  $f(x) = x^2 + 1$  and g(x) = x - 4 Find the following:

19. 
$$(f \cdot g)(6) := f(b) \cdot c_1(b)$$
  
=  $(37) \cdot (2) := \boxed{34}$ 

For  $f(x) = \frac{1}{3}x - 3$  and g(x) = 3x + 1 Find the following:

21. 
$$(f \circ g)(x) = f[g(x)]$$
  
=  $\frac{1}{3}(3x+1) - 3 = x + \frac{1}{3} - \frac{2}{3}$   
=  $x + \frac{1}{3} - \frac{2}{3} = x - \frac{4}{3} \sqrt{3}$ 

23. 
$$(f \circ f)(x)$$

$$= f(f(x))$$

$$= \frac{1}{3}(\frac{1}{3}x-3)-3$$

$$= \frac{1}{4}x-1-3 = \frac{1}{4}x-4$$

20. 
$$(f+g)(2) = f(2) + g(2)$$
  
=  $((2)^2 + 1) + (2 - 4)$   
=  $(5) + (2)$   
=  $(3)^2 + (2)$ 

22. 
$$(g \circ f)(12) = g[f(12)]$$
  
=  $g[\frac{1}{3}(12) - 3]$   
=  $g[4 - 3]$   
=  $g[1] = 3(1) + 1 = 4$ 

24. 
$$(g \circ g)(2)$$

$$= g[g(2)]$$

$$= g[g(2)]$$

$$= g[g(2)] + i[g(2)]$$

$$= g[g(2)] + i[g(2)]$$

Does the following functions have an inverse? Yes or No. Why?



Show that f(x) = 5x + 1 and  $g(x) = \frac{x-1}{5}$  are inverse functions <u>algebraically</u>.

You must show work!

27. Find 
$$(f \circ g)(x) = \{ \exists \{ x \in X \} \}$$
  
=  $\{ \{ x = 1 \} \} + \{ \{ x \in X \} \} = \{ x \in X \} = \{ x \in X \} \}$ 

28. Find 
$$(g \circ f)(x) = g(f \circ f)$$

$$= \frac{5x+1}{5} = \frac{5x}{5} = \frac{5x}{5}$$

Find the inverse for the following functions. (Note: you don't have to verify)

30. 
$$f(x) = \frac{x+1}{x-2}$$

$$y = \frac{x+1}{x-2}$$

$$x = \frac{x+1}{x-2}$$

$$x(y-2) = \frac{y+1}{y-2}$$

## **Answers to Sample Test 2**

| 1. | m = 0.15 | 2. | $y = \frac{-1}{3}x + \frac{4}{3}$ |
|----|----------|----|-----------------------------------|
| 3. | y = 4    | 4. | $y = \frac{-1}{2}x + 2$           |

| 5. | NO the 5's repeat!                      | 6.  | a) 2   | b) 5 |
|----|-----------------------------------------|-----|--------|------|
| 7. | a) 2/5 b) -13/5                         | 8.  | [10,∞) |      |
| 9. | Inc.= $(-\infty, -1]$ and $(2, \infty)$ | 10. | Yes    |      |

Decr. = 
$$[-1,2)$$
  
Const = None  
11. Domain =  $(-\infty,\infty)$   
12.  $f(x) = -|x| - 10$ 

Range = 
$$[0.5, \infty)$$

13. 
$$f(x) = (x+6)^3 - 6$$
 14. Vertical shift of  $f(x) = x^3$   
15.  $f(x) = x^2 - x + 2$  upward and horizontal shift

16. 
$$f(x) = x^2 + x - 2$$
  
17.  $f(x) = x^2(2 - x) = 2x^2 - x^3$ 



18. 
$$f(x) = \frac{x}{2-x}$$

- 19. 74
- 20.

21. 
$$(f \circ g)(x) = x - \frac{8}{3}$$

22.

23. 
$$(f \circ f)(x) = \frac{1}{9}x - 4$$

24. 22



 $(f \circ g)(x) = x ? Yes!$ 27.

29. 
$$f^{-1}(x) = \frac{x+3}{2}$$

Vertical shift of  $f(x) = x^3 2$  units 14. upward and horizontal shift of 1 unit to the right.



- No, by Horizontal Line Test! 26.
- $(g \circ f)(x) = x ? Yes!$ 28.
- $f^{-1}(x) = \frac{2x+1}{x-1}$ 30.