
Math 1111	Sample Test 3	Name			
3.1 - 3.4, 4.1(class)		Date			
Directions: To receive partial credit you must show your work on a problem. <u>Circle final answers</u> . All problems are 5 points each.					
For the quadratic function $y = -2x^2 - 12x - 16$ find the following.					
1. Vertex =	2		nd y intercepts nt = y-int =		

For the quadratic function $y = -2x^2 - 12x - 16$ find the following.

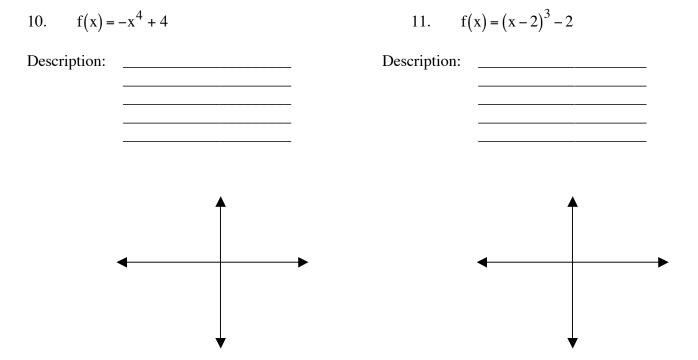
Divide the following polynomials.

Divide the following polynomials.

5.
$$(2x^2 + 10x + 12) \div (x + 3)$$

6.
$$(4x^3 - 7x^2 - 11x + 5) \div (4x + 5)$$

Divide the following polynomials.

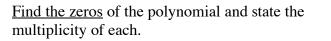

Divide the following polynomials.

7.
$$(5x^3 - 6x^2 + 8) \div (x - 4)$$
 8. $(7x + 3) \div (x + 2)$

<u>Use synthetic division and the factor theorem</u> to determine whether the second polynomial is a factor of the first. State **YES** or **NO**

9.
$$f(x) = x^4 - 25x^2 + 144;$$
 $x + 3$

Describe the transformation that occurs in the function. Remember to find the basic function first. Also sketch the graph.

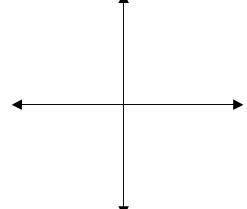

Graph the polynomial function. SHOW ALL the steps we discussed in class.

y = (x + 2)(x - 1)(x - 2)(x + 2)

12. Find the x and y intercepts.

13. Find the test point information for the x-intercepts.

14. Use the previous work(#12 and #13) to graph the polynomial.



15.
$$P(x) = x^2 (x^2 - 4) (x + 3)^2$$

Use the Rational Zero Theorem to list <u>possible</u> <u>rational zeros</u> for the polynomial.

16.
$$P(x) = 2x^3 + x^2 - 25x + 12$$

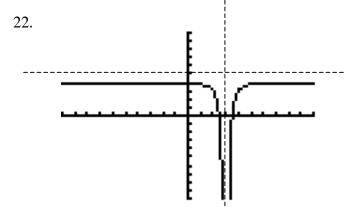
Use the Rational Zero Theorem to list <u>possible</u> <u>rational zeros</u> for the polynomial.

17.
$$P(x) = x^5 - 32$$

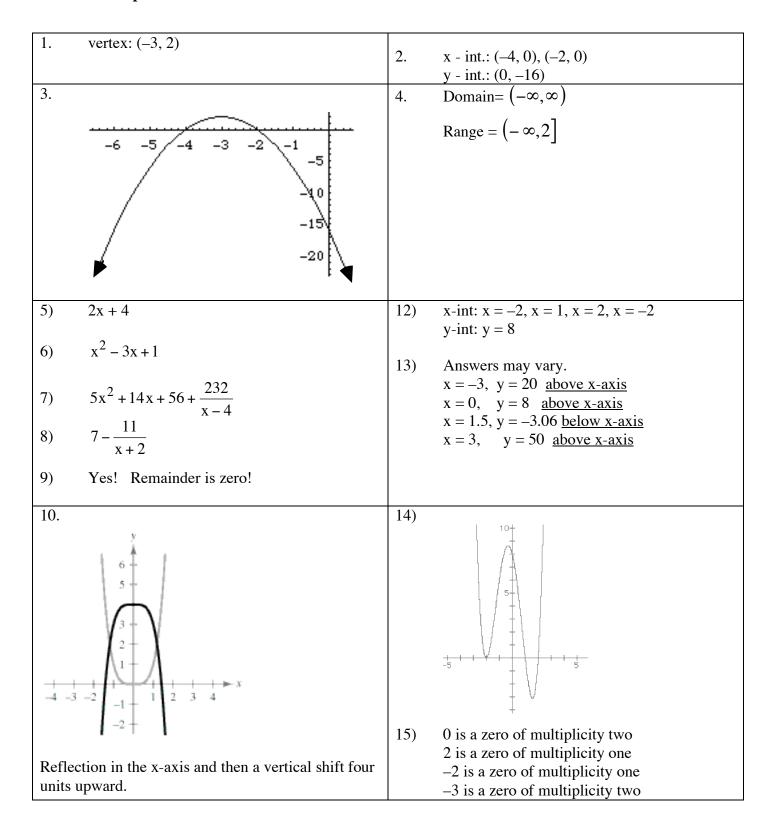
Factor each polynomial into linear factors and/or quadratic factors that are irreducible over the reals.

18.
$$P(x) = x^3 - x^2 - 2x$$

Find the zeros of the polynomial.


19.
$$P(x) = 2x^4 - 17x^3 + 4x^2 + 35x - 24$$

20.
$$P(x) = x^4 + x^3 - 2x^2 + 4x - 24$$


Find the zeros of the polynomial.

21.
$$P(x) = 6x^4 + 23x^3 + 19x^2 - 8x - 4$$

Use stretching/shrinking, reflecting and shifting rules to give an equation of the following graphs.

Answers Sample Test 3

11.		
	16)	$\frac{p}{q} = \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12, \pm \frac{1}{2}, \pm \frac{3}{2}$
	17)	$\frac{p}{q} = \pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32$
-3 -2 -1 2 4 5 x	18)	factors are: $x(x-2)(x+1)$
	19)	zeros are: $x = 8, x = 1, x = 1, x = \frac{-3}{2}$
	20)	zeros are: $x = -3, x = 2, x = +2i, x = -2i$
Horizontal shift two units to the right and a vertical shift two units downward.		zeros are: $x = \frac{1}{2}, x = -2, x = -2, x = \frac{-1}{3}$
22) $\frac{-1}{(x-3)^2} + 5$	23)	V.A. <u>x = 4</u> H.A. <u>None</u> S.A. <u>y = 2x+8</u>
24) V.A. $x = -2 \& x = 3/5$ H.A. $y = 6/5$	25)	x-int $\underline{x=0}$, y-int $\underline{y=0}$
S.A. <u>None</u>		
26) x-int $x = 5 \& x = 2$, y-int $y = 10/9$	27)	see attached sheet. (next page)