3.1 - 3.4, 4.1, 4.2

Directions: To receive partial credit you must show your work on a problem.

Circle final answers. All problems are 5 points each.

For the quadratic function $y = -2x^2 - 12x - 16$ find the following.

1. Vertex =
$$(-3, 2)$$

$$h = \frac{-b}{2a} = \frac{-(-12)}{2(-2)} = \frac{12}{-1} = -3$$

$$k = f(h) = f(-3) = -2(-3)^{2} - 12(-3) - 16$$

= -18+36-16
= 2

$$x-int = \frac{-4}{-2} \quad y-int = \frac{-16}{-16}$$

$$(y=0) \quad (x=0)$$

$$0 = -2x^{2} - 12x - 16$$

$$0 = -2x^{2} + 6x + 8$$

$$0 = (x+4)(x+2)$$

$$x=-4 \quad (x=2)$$

For the quadratic function $y = -2x^2 - 12x - 16$ find the following.

$$D = (-\infty, \infty) \qquad R = (-\infty, 2]$$

Divide the following polynomials.

5.
$$(2x^{2} + 10x + 12) \div (x + 3)$$

$$-3 \overline{\smash{\big)}2 \quad 10 \quad 12}$$

$$\underline{-\psi \quad -12}$$

$$2 \quad 4 \quad 0$$

Divide the following polynomials.

6.
$$(4x^3 - 7x^2 - 11x + 5) \div (4x + 5)$$

$$4x+5$$
 $\boxed{4x^3-7x^2-11x+5}$ $\boxed{94x^3-7x^2-11x+5}$ $\boxed{94x^3-7x^2-11x}$ $\boxed{94x^2-11x}$ $\boxed{91x^2-11x}$ $\boxed{94x+5}$ $\boxed{94x+5}$

Divide the following polynomials.

7.
$$(5x^3 - 6x^2 + 8) \div (x - 4)$$

$$\frac{4 \left[5 - 6 0 8\right]}{20 56 224} \\
5 14 56 232$$

$$\left[5 \times^{2} + 14 \times + 56 + \frac{232}{\chi - 4}\right]$$

Divide the following polynomials.

8.
$$(7x+3) \div (x+2)$$

$$\begin{array}{c|cccc}
-2 & 3 & \\
\hline
 & -14 & \\
\hline
 & 7 & -11 & \\
\end{array}$$

<u>Use synthetic division and the factor theorem</u> to determine whether the second polynomial is a factor of the first. State YES or NO

9.
$$f(x) = x^4 - 25x^2 + 144$$
; $x + 3$

<u>Describe</u> the transformation that occurs in the function. Remember to find the basic function first. Also sketch the graph.

10.
$$f(x) = -x^4 + 4$$

Description:

	Looke)	like	Y	= X
معا	bleck	 W/	1 1 1 1	X	ΛX.b
	-0	7			

11.
$$f(x) = (x-2)^3 - 2$$

Description:

Graph the polynomial function. SHOW ALL the steps we discussed in class.

$$y = (x + 2)(x - 1)(x - 2)(x + 2)$$

12. Find the x and y intercepts.

$$\begin{array}{c|c} x + 2 = 0 \\ \hline x = -2 \\ \hline \end{array}$$
 $\begin{array}{c|c} x - 1 = 0 \\ \hline x = 1 \\ \hline \end{array}$ $\begin{array}{c|c} x - 2 = 0 \\ \hline x = -2 \\ \hline \end{array}$ $\begin{array}{c|c} x + 2 = 0 \\ \hline x = -2 \\ \hline \end{array}$

13. Find the test point information for the x-intercepts.

14. Use the previous work(#12 and #13) to graph the polynomial.

Find the zeros of the polynomial and state the multiplicity of each.

15.
$$P(x) = x^2(x^2 - 4)(x + 3)^2$$

Use the Rational Zero Theorem to list possible rational zeros for the polynomial.

16.
$$P(x) = 2x^3 + x^2 - 25x + 12$$

Use the Rational Zero Theorem to list possible rational zeros for the polynomial.

17.
$$P(x) = x^5 - 32$$

 $P = 32 \Rightarrow \pm 1 \pm 2, \pm 4, \pm 8, \pm 16, \pm 32$
 $9 = 1 \Rightarrow \pm 1$

$$\frac{\rho}{8} = \pm 1, \pm 2, \pm 1, \pm 8, \pm 10, \pm 32$$

Factor each polynomial into linear factors and/or quadratic factors that are irreducible over the reals.

18.
$$P(x) = x^3 - x^2 - 2x$$

factor:
$$x(x^2 - x - 2)$$

$$x(x-2)(x+1)$$

Find the zeros of the polynomial.

19.
$$P(x) = 2x^{4} - 17x^{3} + 4x^{2} + 35x - 24$$

$$P(x) = 2x^{4} - 17x^{3} + 4x^{2} + 35x - 24$$

$$P(x) = 2x^{4} - 17x^{3} + 4x^{2} + 35x - 24$$

$$P(x) = 2x^{4} - 17x^{3} + 4x^{2} + 35x - 24$$

$$P(x) = 2x^{4} - 17x^{3} + 4x^{2} + 35x - 24$$

$$P(x) = 2x^{4} - 17x^{3} + 4x^{2} + 35x - 24$$

$$P(x) = 2x^{4} - 17x^{3} + 4x^{2} + 35x - 24$$

$$P(x) = 2x^{4} - 17x^{3} + 4x^{2} + 35x - 24$$

$$P(x) = 2x^{4} - 17x^{3} + 4x^{2} + 35x - 24$$

$$P(x) = 2x^{4} - 17x^{3} + 4x^{2} + 35x - 24$$

$$P(x) = 2x^{4} - 17x^{3} + 4x^{2} + 35x - 24$$

Find the zeros of the polynomial.

Find the zeros of the polynomial. Hint: Find the rational zeros first.

9.
$$P(x) = 2x^4 - 17x^3 + 4x^2 + 35x - 24$$

$$= \pm 1_1 \pm 2_1 \pm 3_1 \pm 4_1 \pm 6_1 \pm 8_1 \pm 12_1 \pm 24$$

$$\pm \frac{1}{2} + \frac{1}{2}$$

Use stretching/shrinking, reflecting and shifting rules to give an equation of the following graphs.

22.

21.
$$P(x) = 6x^{4} + 23x^{3} + 19x^{2} - 8x - 4$$

$$\frac{p}{q} = \pm 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{6} + \frac{1}{2} + \frac{2}{3} + \frac{1}{3} + \frac{1}{3}$$

$$\frac{1}{2} \begin{bmatrix} 6 & 11 & -3 & -2 \\ 3 & 7 & 2 \\ 6 & 14 & 4 & 9 \end{bmatrix}$$

$$\frac{1}{3} \begin{bmatrix} 6 & 14 & 4 & 9 \\ 4 & 9 & 4 \end{bmatrix}$$

$$\frac{1}{3} \begin{bmatrix} 6 & 14 & 4 & 9 \\ 4 & 9 & 4 \end{bmatrix}$$

$$\frac{1}{3} \begin{bmatrix} 6 & 14 & 4 & 9 \\ 4 & 9 & 4 \end{bmatrix}$$

Give the equations of the vertical, horizontal and/or slant asymptotes of the rational functions.

23.
$$f(x) = \frac{2x^2 + 3}{x - 4}$$

24.
$$f(x) = \frac{2(3x-1)(x+4)}{(x+2)(5x-3)}$$

$$V, A, \chi-4=0$$
 H. A. S.A. $(x+2)(5x-3)=0$ H. A. Rule 2
 $(x-4)$ Rule 3 $(x-4)(2x^2+0x+3)$ $(x-2)(2x^2+0x+3)$ $(x-2)(2x^2+0x+3)$

$$V.A. (x+2)(5x-3)=0$$
 H. A. Rule 2
 $X=-2$ $X=\frac{3}{5}$ $Y=\frac{6x^2}{5x^2}$
 $S.A. (none)$ $Y=\frac{6}{5}$

Find the x-intercepts and y-intercept of the rational function.

25.
$$f(x) = \frac{3x}{(x+1)(x-2)}$$

26.
$$f(x) = \frac{(x-5)(x-2)}{x^2+9}$$

x-int ____ y-int ____

$$y=0$$
 $(x=0)$ $(x=0)$
 $y=3 \times (0+1)(0-2)$

x-int _____ y-int ____ x-int ____ y-int ____

$$V = 0$$
 $V = 0$ $V = 0$

Sketch the graph and provide information about intercepts and asymptotes.

27.
$$f(x) = \frac{x}{x^2 - x - 2}$$

Example Sketch the graph and provide information about intercepts and asymptotes.

$$f(x) = \frac{x}{x^2 - x - 2}$$

1. Find and plot the x-intercepts. (Set numerator = 0 and solve for x)

$$x = 0$$

2. Find and plot the y-intercepts. (Let x = 0 and solve for y)

$$f(0) = \frac{0}{0^2 - 0 - 2} = 0$$

3. Find and plot the Vertical Asymptotes. (Set denominator = 0 and solve for x)

$$x^{2} - x - 2 = 0$$

 $(x + 1)(x - 2) = 0$
 $x = -1$ and $x = 2$

4. Find and plot the Horizontal Asymptotes. (Top heavy, Bottom heavy or Same)

(Rule 1)
$$y = 0$$

5. Find and plot the Slant Asymptotes. (Divide numerator by denominator.)

None

6. Plot at least one point between and beyond each x-intercept and vertical asymptotes.

choose:

x = -2	x =5	x = 1	x = 3
y =5	y = .4	y =5	y = .75

Note: YOU MAY WANT TO PICK MORE POINTS TO GET A BETTER GRAPH!

ANSWER: