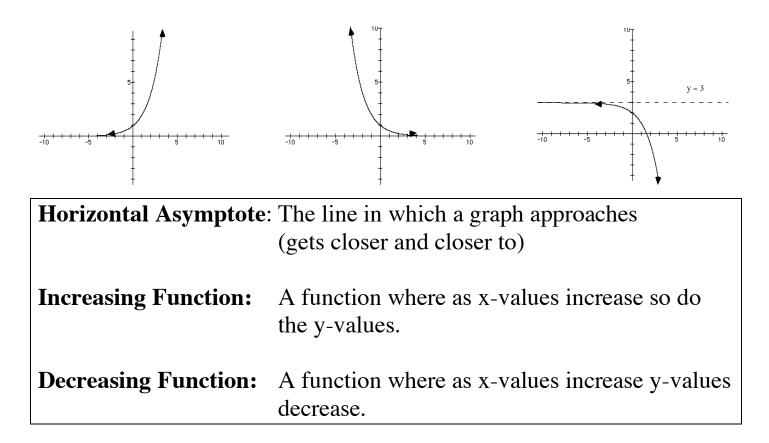
Exponential Function:

If a > 0, $a \neq 1$, and x is any real number, then

 $f(x) = a^x$ defines the exponential function with base a.

Example 1 : Evaluate the following exponential expressions with your calculator.

a)
$$2^{-3.1}$$
 b) 2^{π}


Graphing Exponential Functions

Graphs of the Form: $f(x) = a^X$

- 1) The point (0, 1) is on the graph.
- If a > 1, f is an increasing function; If 0 < a < 1, f is an decreasing function.
- 3) The x-axis is a horizontal asymptote.
- 4) The domain is (-oo, oo) and the range is (0, oo).

Graph $f(x) = 2^x$

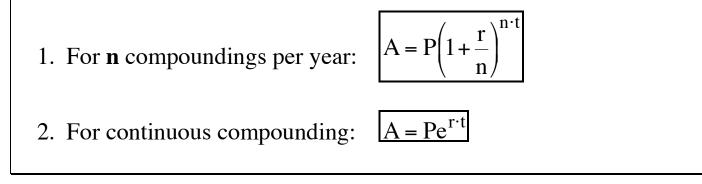
Graph $g(x) = 2^{-x}$ Graph $h(x) = -2^{x} + 3$

Exponential Equations (TYPE 1)

Example 2: Solve

a)
$$\left(\frac{1}{3}\right)^x = 81$$
 b) $1.5^{x+1} = \left(\frac{27}{8}\right)^x$

The Natural Base e


 $e \approx 2.71828....$

Example 3: Use a calculator to evaluate each expression.

a)
$$e^{-2}$$
 b) e^{-1} c) e^{1} d) e^{2}

Formulas for Compound Interest:

After t years, the balance A in an account with principal P and annual interest rate \mathbf{r} (in decimal form) is given by the following formulas:

Example 4: A total of \$12,000 is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded:

a) quarterly.

b) continuously.