§5.2 Logarithmic Functions and their Graphs

Logarithm :

For all real numbers y, and all positive numbers a and x, where $a \neq 1$: y = log_a x if and only if x = a^y.

Examples textbook.

Note that your calculator has the ability to evaluate two types of logs.

Common Logs Natural Logs	log (base 10) log (base e)	0			
Example 1:	Evaluating Logar	rithms on	a Calculator		
a) $\log_{10} 2.5$	b) $\log_{10}\left(\frac{1}{3}\right)$	c)	ln0.3	d)	ln(-1)

Properties of Logarithms: (also true for natural logarithms)

1)	$\log_a 1 = 0$	because $a^0 = 1$
2)	$\log_a a = 1$	because $a^1 = a$
3)	$\log_a a^x = x$	because $a^{X} = a^{X}$
4)	$\log_a x = \log_a y,$	then $x = y$

Graphs of the Form: $f(x) = \log_a x$

- 1) The point (1, 0) is on the graph.
- If a > 1, f is an increasing function; If 0 < a < 1, f is a decreasing function.
- 3) The y-axis is a vertical asymptote.
- 4) The domain is $(0,\infty)$ and the range is $(-\infty,\infty)$.

Examples: a) Graph $y = \log x$ b) Graph $y = \log_2(x-1) + 3$