§5.3 Properties of Logarithms

Change of Base Formula:

Let a, b and x be positive real numbers such that $a \ne 1$ and $b \ne 1$. Then

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$\left(\log_a x = \frac{\log_{10} x}{\log_{10} a} \quad \text{or} \quad \log_a x = \frac{\ln x}{\ln a}\right).$$

Example 1: Changing Bases Using Common Logarithms & Natural Logarithm

- a) $\log_4 30$
- b) $\log_2 14$ c) $\log_4 30$ d) $\log_2 14$

Properties of Logarithms: (also true for natural logarithms)

1)
$$\log_a 1 = 0$$

1)
$$\log_a 1 = 0$$
 because $a^0 = 1$

2)
$$\log_a a = 1$$

2)
$$\log_a a = 1$$
 because $a^1 = a$
3) $\log_a a^x = x$ because $a^x = a^x$

3)
$$\log_a a^x = x$$

because
$$a^{X} = a^{X}$$

4)
$$\log_a x = \log_a y$$
, then $x = y$

Example 2: Solve for x.

a)
$$\log_2 x = \log_2 3$$
 b) $\log_4 4 = x$ c) $\log_2 \frac{1}{8} = x$

b)
$$\log_4 4 = x$$

c)
$$\log_2 \frac{1}{8} = x$$

Example 3: Rewrite using Properties of Natural Logarithms

a) $\ln \frac{1}{4}$

b) lne^3

c) lne^0

Properties of Logarithms:

For any positive real numbers x and y, real number r, and any positive real number $a,(a \ne 1)$:

Product Rule

a) $\log_a xy = \log_a x + \log_a y$

Quotient Rule

b) $\log_a \frac{x}{y} = \log_a x - \log_a y$

Power Rule

c) $\log_a x^r = r \log_a x$

Example 4: Rewrite the logarithm in terms of ln 2 and ln 3.

b)
$$\ln \frac{2}{27}$$

Example 6: Rewrite using the properties of logarithms.

a)
$$\log_{10} 5x^3y$$

b)
$$\ln \frac{\sqrt{3x-5}}{7}$$

Example 7: Rewrite in condensed form.

a)
$$\frac{1}{2}\log_{10} x + 3\log_{10}(x+1)$$

b)
$$2\ln(x+2) - \ln x$$