
Math 1111	Sample Test 4	Name
5.1 - 5.5		Date

Use stretching/shrinking, reflecting and shifting rules to give an equation of the following graphs. Note: there may be more than one answer for these.

Rewrite the logarithm in terms of ln 2 and ln 7.

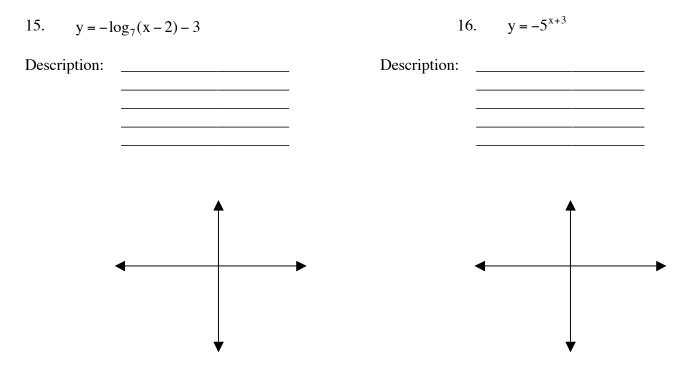
3. $\ln 14$ 4. $\ln \frac{2}{49}$

Rewrite using the properties of logarithms.

5.
$$\log_2 \frac{\sqrt{a-1}}{9}$$
 6. $\ln xyz^2$

Solve the following exponential or logarithmic equations. SHOW YOUR WORK ! You can check your answers with your calculator. Don't forget some of these have answers that have to be checked !

7.
$$\left(\frac{1}{3}\right)^{x} = 81$$
 8. $\log_4 x = 3$


9.
$$\left(\frac{3}{2}\right)^{x+1} = \left(\frac{8}{27}\right)^x$$
 10. $8^x = 42$

11.
$$\log_2 \frac{1}{8} = x$$
 12. $\ln 3x = 4$

Evaluate the following expressions with your calculator. Round to three decimal places.

13. $e^{\pi} = _$ 14. $\log_5 117 = _$

Describe the transformation that occurs in the function. Remember to find the basic function first. Also sketch the graph.

17. A total of \$16,500 is invested at an annual interest rate of 7%. Find the balance after 8 years if it is compounded monthly.

18. A total of \$12,500 is invested at an annual interest rate of 11%. Find the balance after 5 years if it is compounded continuously.

19) 3^e

20) $\log_7 7^{(x+1)}$

- 21. For a savings account with a initial investment of \$1000 and an annual rate of 12% in which interest is compounded continuously find
- a) The amount of time it takes to double the amount.
- b) The amount after saving for 10 years.

22. For the radioactive isotope ¹⁴C with half-life of 5730 (years) find the initial amount if there are 2 grams left after 1000 years. (Hint first find the rate if decay.)

23. The population in Texas (in thousands) from 1991 to 2000 can be modeled by $P = 16,968e^{0.019t}$ where t = 1 represents the year 1991. According to this model, when will the population reach 22 million?

Sample Test 4 Answers

$1) \qquad y = 2^x - 6$	$2) \qquad y = \log(x) + 3$
3) $\ln 2 + \ln 7$	4) $\ln 2 - 2 \ln 7$
5) $\frac{1}{2}\log_2(a-1) - 2\log_2 3$	$\ln x + \ln y + 2\ln z$
7) $x = -4$	8) x = 64
$9) \qquad x = \frac{-1}{4}$	$10) \qquad x = \frac{\ln 42}{\ln 8}$
11) $x = -3$	$12) \qquad x = \frac{e^4}{3}$
13) 23.141	14) 2.959
15) Reflect over x axis shift right 2 and down 3.	16) reflect over x axis shift left 3.
17) \$ 28839.14	18) \$21665.66
19) 19.81299075	$\begin{array}{c} 20) x + 1 \\ \hline 22 x + 5 1 (1 0 5) (5720) \end{array}$
21. a) 5.78 years b) \$3320.12	22. rate of decay k = $(\ln 0.5)/5730$ after 1000 years about 2.26 grams are left.
23. $t \approx 13.7$ years which is the later half of the year 2003.	