Solving a System of Equations by Substitution

Example 1: Find the solution of each system by substitution.

a)
$$x^2 + 4x - y = 7$$

 $2x - y = -1$

Solve either equation for one of the variables.

I choose to solve equation (2) for y it's easier to solve. I'm avoiding the equation with the x^2 .

$$2x - y = -1$$

$$-y = -2x - 1$$

$$y = 2x + 1$$

now substitute this expression (2x + 1) into the other equation $x^2 + 4x - y = 7$ for y.

$$x^{2} + 4x - y = 7$$

 $x^{2} + 4x - (2x + 1) = 7$ (notice only one variable! Now solve for x.)
 $x^{2} + 4x - 2x - 1 = 7$
 $x^{2} + 2x - 8 = 0$
 $(x + 4)(x - 2) = 0$

 $\underline{x = -4}$ and $\underline{x = 2}$ (now "back substitute" these values into the original equation we solved for y)

$$y = 2x + 1$$
 $y = 2(-4) + 1$ $y = 2(2) + 1$ $y = -7$ $y = 5$

Solution are: (-4, -7) and (2, 5)

Check
$$(-4, -7)$$

 $x^2 + 4x - y = 7$
 $(-4)^2 + 4(-4) - (-7) = 7$?
 $16 - 16 + 7 = 7$
 $7 = 7$ YES!
Check $(-4, -7)$
 $2x - y = -1$
 $-1 = -1$ YES!
Check $(-4, -7)$
 $2x - y = -1$
 $-1 = -1$ YES!
Check $(-4, -7)$
 $2x - y = -1$
 $2(2) - (5) = -1$
 $-1 = -1$ YES!