Guidelines for Graphing Rational Functions

a.) $f(x) = \frac{2(x^2 - 9)}{x^2 - 4}$ example Find and plot the x-intercepts. (Set numerator = 0 and solve for x). $2(x^2 - 9) = 0$ $x^2 - 9 = 0$ $x^2 = 9$ $x = \pm 3$

2. Find and plot the v-intercepts. (Let x = 0 and solve for y)

$$f(0) = \frac{2(0^2 - 9)}{0^2 - 4} = \frac{9}{2}$$

3. Find and plot the Vertical Asymptotes. (Set denominator = 0 and solve for x)

$$x^2 - 4$$

1.

$$X = 4$$

$$x = \pm 2$$

Find and plot the Horizontal Asymptotes. (Top heavy, Bottom heavy or Same) 4.

 $f(x) = \frac{2(x^2 - 9)}{x^2 - 4}$ Rule 2 Numerator and denominator have the same degree. y = 2 H.A.

Find and plot the Slant Asymptotes. (Divide numerator by denominator.) 5.

None ! Only have these if Numerator is exactly 1 degree higher than denominator!

Find where the graph will intersect its nonvertical asymptote by solving f(x) = k, where k is the y-6. value of the horizontal asymptote, or f(x) = mx + b, where y = mx + b is the equation of the oblique asymptote.

Solve $2 = \frac{2(x^2 - 9)}{x^2 - 4}$ (No solution!) No oblique asymptotes.

7 Plot at least one point between and beyond each x-intercept and vertical asymptotes.

Remember Test Points ?

Choose test points carefully!

x = -4	x = -2.5	$\mathbf{x} = 0$	x = 2.5	x = 4		x = -1	x = 1	
y = 1.16	y = -2.4	y = 4.5	y = -2.4	y = 1.16		y = 5.3	y = 5.3	

Note: YOU STILL MAY HAVE TO PLOT ADDITIONAL POINTS !

Use smooth curves to complete the graph between and beyond the vertical asymptotes.