§3.1 Exponential Functions and Their Graphs

Exponential Function:

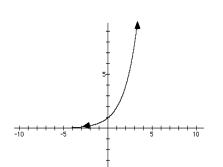
If a > 0, $a \ne 1$, and x is any real number, then

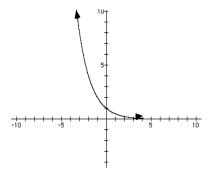
 $f(x) = a^{x}$ defines the exponential function with base a.

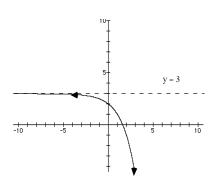
Evaluate the following exponential expressions with Example 1: your calculator.

a) $2^{-3.1}$

- b) $2^{-\pi}$
- c) $12^{5/7}$
- d) $(0.6)^{3/2}$


Graphing Exponential Functions


 $f(x) = a^X$ **Graphs of the Form:**


- 1) The point (0, 1) is on the graph.
- 2) If a > 1, f is an increasing function; If 0 < a < 1, f is an decreasing function.
- 3) The x-axis is a horizontal asymptote.
- 4) The domain is $(-\infty,\infty)$ and the range is $(0,\infty)$.

Graph $f(x) = 2^X$

Graph $g(x) = 2^{-x}$ Graph $h(x) = -2^{x} + 3$

Horizontal Asymptote: The line in which a graph approaches (gets closer and closer to)

Increasing Function: A function where as x-values increase so do the y-values.

Decreasing Function: A function where as x-values increase y-values decrease.

Exponential Equations (TYPE 1)

Example 2: Solve

a)
$$\left(\frac{1}{3}\right)^x = 81$$

b)
$$1.5^{x+1} = \left(\frac{27}{8}\right)^x$$

The Natural Base e

 $e \approx 2.71828...$

Example 3: Use a calculator to evaluate each expression.

a) e^{-2}

b) e^{-1}

- c) $e^{0.25}$
- d) $e^{-0.3}$

Formulas for Compound Interest:

After \mathbf{t} years, the balance \mathbf{A} in an account with principal \mathbf{P} and annual interest rate \mathbf{r} (in decimal form) is given by the following formulas:

- 1. For **n** compoundings per year: $A = P\left(1 + \frac{r}{n}\right)^{n \cdot t}$
- 2. For continuous compounding: $A = Pe^{r \cdot t}$

Example 4: A total of \$12,000 is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded:

a) quarterly.

b) continuously.