§3.3 Properties of Logarithms

Change of Base Formula:

Let a, b and x be positive real numbers such that $a \ne 1$ and $b \ne 1$. Then

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$\left(\log_a x = \frac{\log_{10} x}{\log_{10} a} \quad \text{or} \quad \log_a x = \frac{\ln x}{\ln a}\right).$$

Example 1: Changing Bases Using Common Logarithms & Natural Logarithm

- a) $\log_4 30$
- b)
- $\log_2 14$ c) $\log_4 30$ d) $\log_2 14$

Properties of Logarithms: (also true for natural logarithms)

- 1) $\log_a 1 = 0$ because $a^0 = 1$
- 2) $\log_a a = 1$ because $a^1 = a$
- 3) $\log_a a^x = x$ because $a^x = a^x$
- 4) $\log_a x = \log_a y$, then x = y

Example 2: Solve for x.

- a) $\log_2 x = \log_2 3$ b) $\log_4 4 = x$ c) $\log_2 \frac{1}{8} = x$

Example 3: Rewrite using Properties of Natural Logarithms

 $\ln \frac{1}{e}$ a)

b) lne³

c) lne^0

Properties of Logarithms:

For any positive real numbers x and y, real number r, and any positive real number $a,(a \neq 1)$:

Product Rule a)
$$\log_a xy = \log_a x + \log_a y$$

$$\ln xy = \ln x + \ln y$$

Quotient Rule b)
$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$\ln \frac{x}{y} = \ln x - \ln y$$

Power Rule c)
$$\log_a x^r = r \log_a x$$

$$\ln x^r = r \ln x$$

Example 4: Rewrite the logarithm in terms of ln 2 and ln 3.

b)
$$ln\frac{2}{27}$$

Rewrite using the properties of logarithms. Example 6:

a)
$$\log_{10} 5x^3y$$

b)
$$\ln \frac{\sqrt{3x-5}}{7}$$

Rewrite in condensed form. Example 7:

a)
$$\frac{1}{2}\log_{10} x + 3\log_{10}(x+1)$$

b)
$$2\ln(x+2) - \ln x$$