Math 1113

Sample Test 1

Sections 3.1 - 3.5

Version A

Directions. Show all work. Circle final answers.

- 1. Evaluate the following exponential expressions with your calculator.
 - 2^{e+1} (Give 3 decimal places)

 Name_____

 Date

2. **Describe** the transformation that occurs in the function. Remember to find the basic function first. Also sketch the graph. $f(x) = e^{x+1} + 5$

Description:

3. Graph $f(x) = -3^{x+3} + 5$

4. State the domain and range for the following graph.

- 5. Use a calculator to evaluate the expression.
- 6. Rewrite in exponential form.

 $\log_{b}(s+t) = r$

 $10^{\sqrt{7}}$ = _____

7. Rewrite in logarithmic form.

 $b^k = j$

9. What is a natural logarithm ?

- 8. What is a common logarithm ?
- 10. Evaluate with a Calculator.
- 11. Graph by using its exponential form. You must do the problem this way!

13. **Describe** the transformation that occurs in the function. Remember to find the basic function first. Also sketch the graph. $f(x) = 2 - \ln(x - 5)$

12. Find the domain of the function.

 $\log_{2/3}(11 - x)$

14. Graph $f(x) = \log_3(-x) + 2$

15. What are the four properties of the graph of $f(x) = \log_b x$ that we discussed in class?

16. Solve
$$\left(\frac{1}{2}\right)^x = 32$$

- 17. A total of \$15,800 is invested at an annual interest rate of 6.5%. Find the balance after 3 years if it is compounded:
- a) daily. b) continuously.

18.Find the following using your calculator.
hint: use change-of- base formula.
Give three decimal places.19.Find the following using your calculator.
hint: use change-of- base formula.
Give three decimal places. $log_8 15$ $ln_3 127$

20. Rewrite the logarithm in terms of ln 2 and ln 7.

21. Rewrite in condensed form.

 $\frac{1}{3} [\log_2 x + \log_2 (x+1)]$

 $ln\frac{2}{49}$

Solve the following exponential or logarithmic equations. <u>SHOW YOUR WORK</u> ! Don't forget some of these have answers that have to be checked.

22.
$$3^x = 243$$
 23. $8^x = 42$

Solve the following exponential or logarithmic equations. <u>SHOW YOUR WORK</u> ! Don't forget some of these have answers that have to be checked (#5 - #10)

24. $3^{2x} = 80$ 25. $\ln 2x = 2.4$

26.
$$\log 5x + \log(x - 1) = 2$$
 27. $2\log_5 3x = 4$

- 28. For a savings account with a initial investment of \$1000 and an annual rate of 12% in which interest is compounded continuously find
- a) The amount of time it takes to double the amount. b) The amount after saving for 10 years.
- 29. For the radioactive isotope ¹⁴C with half-life of 5730 (years) find the initial amount if there are 2 grams left after 1000 years. (Hint first find the rate if decay.)
- 30. The population in Texas (in thousands) from 1991 to 2000 can be modeled by $P = 16,968e^{0.019t}$ where t = 1 represents the year 1991. According to this model, when will the population reach 22 million?

Answers Sample Test 1

15.	 The point (1, 0) is on the graph. If a > 1, f is an increasing function; If 0 < a < 1, f is a decreasing function. The y-axis is a vertical asymptote. The domain is (0, oo) and the range is (- op. oo) 	16.	x = -5
17a)	\$19.201.58	17b)	\$19.201.91
18.	≈1.302	23.	$x = \frac{\ln 42}{\ln 8} \approx 1.797$
19.	≈ 4.409	24.	$\frac{\ln 80}{2\ln 3} \approx 1.994$
20.	$\ln 2 - 2 \ln 7$	25.	$\frac{e^{2.4}}{2} \approx 5.512$
21.	$\log_2 \sqrt[3]{x(x+1)}$	26.	x = 5 (only solution)
22.	x = 5	27.	$x = \frac{25}{3}$
28. a)	5.78 years b) \$3320.12	29.	rate of decay $k = (\ln 0.5)/5730$
			after 1000 years about 2.26 grams are left.
30.	$t \approx 13.7$ years which is the later half of the		
	year 2003.		