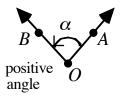
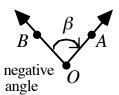
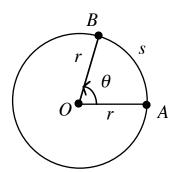
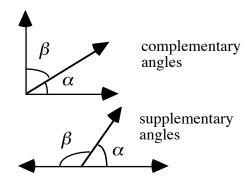

§4.1 Radian and Degree Measure


So what does trigonometry mean?


Answer: "measurement of triangles!"

- a <u>ray</u> starts at a point and extends indefinitely
- an <u>angle</u> occurs when a ray is rotated about its endpoint
- the starting position of the ray is the <u>initial side</u> of the angle
- the position of the ray after rotation is the <u>terminal side</u> of the angle
- the meeting point of the two rays is the <u>vertex</u> of the angle
- a <u>positive angle</u> is formed by a counterclockwise rotation
- a <u>negative angle</u> is formed by a clockwise rotation
- <u>coterminal</u> angles have the same initial and terminal sides.




Radian Measure

- consider a circle of radius r with two radii OA and OB
- the angle θ formed by these two radii is a <u>central angle</u>
- the <u>arc</u> AB is the part of the circle between A and B and its length is s
- the arc AB subtends the angle θ

- the measure of the central angle subtended by an arc of length r on a circle with radius r is one <u>radian</u>
- the <u>radian measure</u> of the central angle subtended by an arc of length s on a circle of radius r is $\theta = \frac{s}{r}$ or $s = r\theta$
- given a circle of radius r, the radian measure of the central angle subtended by the circumference of the circle is $\theta = \frac{2\pi r}{r} = 2\pi$ while in degrees $\theta = 360^{\circ}$
- thus, $360^{\circ} = 2\pi$ radians and $180^{\circ} = \pi$ radians

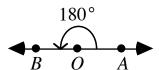
- two **nonnegative** angles α and β are complementary angles if $\alpha + \beta = 90^{\circ}$
- in this case, α is the <u>complement</u> of β and vice versa
- two **nonnegative** angles α and β are supplementary angles if $\alpha + \beta = 180^{\circ}$
- in this case, α is the <u>supplement</u> of β and vice versa

- Discuss common angles, revolutions, and quadrants in the coordinate system.

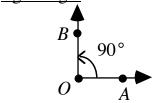
Example 1 Find the coterminal angles for the following angles.

a)
$$\frac{13\pi}{6}$$

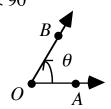
b)
$$\frac{-2\pi}{3}$$

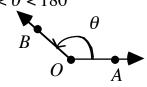

Example 2 Find the complement and supplement angles for the following angles.

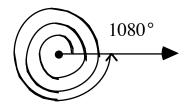
a)
$$\frac{2\pi}{5}$$

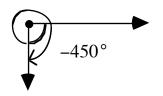

b)
$$\frac{4\pi}{5}$$

Degree Measure


- an angle formed by rotating a ray $\frac{1}{360}$ of a complete revolution has a measure of 1 degree (1°)
- angles are often classified by their measures
 - (1) a <u>straight angle</u> has a measure of 180°


(2) a <u>right angle</u> has a measure of 90°


(3) an acute angle has a measure $0^{\circ} < \theta < 90^{\circ}$



(4) an obtuse angle has a measure $90^{\circ} < \theta < 180^{\circ}$

- angles larger than 360° or smaller than -360° can be measured by considering more than one rotation

Radian-Degree Conversion Factors

- to change radians to degrees, multiply the number of radians by
- to change degrees to radians, multiply the number of degrees by $\frac{\pi}{180^{\circ}}$

Example Convert from Degrees to Radians.

c)
$$-270^{\circ}$$

Example Convert from Radians to Degrees

a)
$$\frac{-\pi}{2}$$

b)
$$\frac{9\pi}{2}$$

DMS System (Degree, Minute, Second)

1 minute
$$(1') = \left(\frac{1}{60}\right)^{\circ}$$

$$\Rightarrow 60' = 1^{\circ}$$

1 minute
$$(1') = \left(\frac{1}{60}\right)^{\circ}$$
 $\Rightarrow 60' = 1^{\circ}$
1 second $(1'') = \left(\frac{1}{60}\right)' = \left(\frac{1}{3600}\right)^{\circ}$ $\Rightarrow 60'' = 1'$ and $3600'' = 1^{\circ}$

$$\Rightarrow$$
 60" = 1' and 3600" = 1°

Example Convert 20° 4′45″ to decimal degree measure to the nearest thousandth.

Example Convert 342.17° to DMS.

Example Find the complement and supplement of 19°42′05″.

Note: You \underline{MUST} memorize all degree to radian conversions of the selected angles listed below and know their positions on a circle measured from the positive x-axis.

Degrees	Radians	
0	0	$90^{\circ}, \frac{\pi}{2}$
30	$\pi/6$	100 7
45	$\pi/4$	120 , 3
60	$\pi/3$	$135^{\circ}, \frac{3\pi}{4}$ $45^{\circ}, \frac{\pi}{4}$
90	$\pi/2$	$150^{\circ}, \frac{5\pi}{6}$ $30^{\circ}, \frac{\pi}{6}$
120	$2\pi/3$	$150^{\circ}, \frac{5\pi}{6}$ $30^{\circ}, \frac{\pi}{6}$
135	$3\pi/4$	
150	$5\pi/6$	
180	π	$180^{\circ}, \pi$ $0^{\circ}, 0$ $360^{\circ}, 2\pi$
210	$7\pi/6$	300 ,211
225	$5\pi/4$	
240	$4 \pi / 3$	
270	$3\pi/2$	$210^{\circ}, \frac{7\pi}{6}$ $330^{\circ}, \frac{11\pi}{6}$
300	$5\pi/3$	
315	$7\pi/4$	$225^{\circ}, \frac{5\pi}{4}$ $315^{\circ}, \frac{7\pi}{4}$
330	$11\pi/6$	$240^{\circ}, \frac{4\pi}{3}$ $300^{\circ}, \frac{5\pi}{3}$
360	2π	$270^{\circ}, \frac{3\pi}{2}$