§4.4 Trigonometric Functions of Any Angle

Definitions of Trigonometric Functions of Any Angle

Let θ be an angle in standard position with (x, y) a point on the <u>terminal</u> side of θ and $r = \sqrt{x^2 + y^2} \neq 0$.

$$\sin \theta = \frac{y}{r}$$

$$\cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{x} \,, \quad (x \neq 0)$$

$$\csc\theta = \frac{r}{y}$$

$$(y \neq 0)$$

$$\sec \theta = \frac{\mathbf{r}}{\mathbf{x}}, \quad (\mathbf{x} \neq 0)$$

$$\sin \theta = \frac{y}{r} \qquad \cos \theta = \frac{x}{r} \qquad \tan \theta = \frac{y}{x}, \quad (x \neq 0)$$

$$\csc \theta = \frac{r}{y}, \quad (y \neq 0) \qquad \sec \theta = \frac{r}{x}, \quad (x \neq 0) \qquad \cot \theta = \frac{x}{y}, \quad (y \neq 0)$$

Example 1 Let (-3,4) be a point on the terminal side of θ . Find the sine, cosine, and tangent of θ .

Example 2: Given $\tan \theta = \frac{-5}{4}$ and $\cos \theta > 0$, find $\sin \theta$ and $\sec \theta$.

Example 3: Evaluate the sine function at the four quadrant angles $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}.$

Reference Angles

Let θ be an angle in standard position. Its **reference angle** is the acute angle θ' formed by the terminal side of θ and the <u>horizontal</u> axis.

Example 4: Find the reference angle θ' .

a)
$$\theta = 300^{\circ}$$

b)
$$\theta = 2.3$$

c)
$$\theta = -135^{\circ}$$

Evaluating Trigonometric Functions of Any Angle

- 1) determine the function value for the associated reference angle θ' .
- 2) depending on the quadrant in which θ lies, affix the appropriate sign to the function value.

Example 5: Evaluate each trig function.

a)
$$\cos \frac{4\pi}{3}$$

b)
$$\tan(210^{\circ})$$

c)
$$\csc = \frac{11\pi}{4}$$

Example 6: Let θ be an angle in Quadrant II such that $\sin \theta = \frac{1}{3}$, by using trigonometric identities find:

a) $\cos \theta$

b) $tan\theta$

Example 7: Use a calculator to find:

- a) $\cot 410^{\circ}$ and $\sin(-7)$
- b) Solve $\tan \theta = 4.812$, $0 \le \theta < 2\pi$