§4.5 Graphs of Sine and Cosine Functions

Graph of $y = \sin x$

X	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y = \sin x$									

- since the domain of
 y = sin x is all real
 numbers, the graph repeats
 infinitely to the left and the
 right
- one <u>period</u> (or <u>cycle</u>) of the graph is on $[0, 2\pi]$

Graphing trigonometric functions on TI calculator

MODE all choices on left should be highlighted, radians

WINDOW	xmin	-2π
	xmax	2π
	xscl	$\pi/2$ (tick marks)
	ymin	-2
	ymax	2
	yscl	1

Example: Graph $y = \sin x$ on your calculator. Draw the axes and label properly.

Example: Sketch the graph of $y = 2 \sin x$ on the interval $[-\pi, 4\pi]$. Remember key points.

Graph of $y = \cos x$

X	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$y = \cos x$									

- since the domain of
 y = cos x is all real
 numbers, the graph repeats
 infinitely to the left and the
 right
- one <u>period</u> (or <u>cycle</u>) of the graph is on $[0, 2\pi]$

Amplitude

Compare the graph $y = \sin x$ to each of the following:

(Vertical Shrinking and Stretching)

Examples:

 $1. y = 2\sin x$

 $2. \quad y = -3\sin x$

3. $y = \frac{1}{2} \sin x$

Compare the graph $y = \cos x$ to each of the following: Period (Horizontal Stretching)

2.
$$y = \cos \frac{1}{2}x$$

1.
$$y = \cos 2x$$
 2. $y = \cos \frac{1}{2}x$ 3. $y = -2\cos 3x$

Formulas for General Form

$$y = d + a \sin(bx - c)$$
 and $y = d + a \cos(bx - c)$

$$amplitude = |a|$$

period (of sine and cosine) =
$$\frac{2\pi}{b}$$

tick marks =
$$\frac{\text{period}}{4}$$

endpoints Solve:
$$bx - c = 0$$

$$bx - c = 0$$

$$bx - c = 2\pi$$

Example: Horizontal Translation

$$y = \frac{1}{2}\sin\left(x - \frac{\pi}{3}\right)$$

Example: Horizontal Translation

Sketch the
$$y = -3\cos(2\pi x + 4\pi)$$
 graph of

Example: Vertical Translation

Sketch the
$$y = 2 + 3\cos(2x)$$
 graph of