
§4.6 Graphs of the Other Trigonometric Functions

Graph of $y = \cot x$

since the domain of $y = \cot x$ is all real numbers except $n\pi$, the graph repeats infinitely to the left

 π

undefined

3π

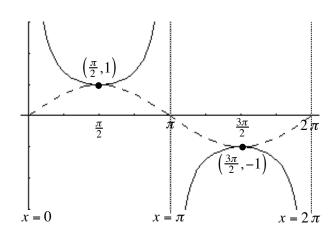
4

-1

and the right

π

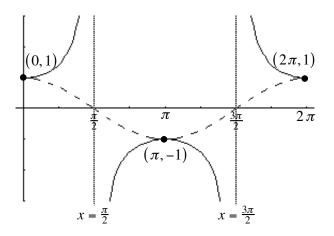
 $\overline{2}$


0

one period (or cycle) of the graph is on $[0, \pi]$

Example 2: Graph $y = 2 \cot \frac{x}{3}$

Graph of $y = \csc(x)$



since the domain of $y = \csc x$ is all real numbers except $n\pi$, the graph repeats infinitely to the left and the right

one <u>period</u> (or <u>cycle</u>) of the graph is on $[0,2\pi]$

Graph of y = sec(x)

since the domain of $y = \sec x$ is all real numbers except $\frac{(2n+1)\pi}{2}$, the graph repeats infinitely to the left and the right

one <u>period</u> (or <u>cycle</u>) of the graph is on $[0,2\pi]$

Example 3: Graph $y = 2\csc\left(x + \frac{\pi}{4}\right)$ Example 4: Graph $y = \sec(2x)$ Example: $y = tan\left(\frac{x}{2}\right)$ (Remember APTEV)

Formulas for General Form $y = a \tan(bx - c) + d$

amplitu

amplitude = none
tick mark calculations:
(1)
$$-\pi$$
 (2) $-\pi + \frac{\pi}{2} = \frac{-\pi}{2}$
(1) $-\pi$ (2) $-\pi + \frac{\pi}{2} = \frac{-\pi}{2}$
(3) $\frac{-\pi}{2} + \frac{\pi}{2} = 0$ (4) $0 + \frac{\pi}{2} = \frac{\pi}{2}$
(5) $\frac{\pi}{2} + \frac{\pi}{2} = \pi$

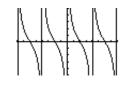
endpoints Solve:

$bx - c = \frac{-\pi}{2}$	$bx - c = \frac{\pi}{2}$
$\frac{x}{2} = \frac{-\pi}{2}$	$\frac{x}{2} = \frac{\pi}{2}$
$x = -\pi$	$x = \pi$
(starts)	(ends)

vertical shift = none

Example:
$$y = 2 \cot\left(\frac{x}{3}\right)$$
 (Remember APTEV)

Formulas for General Form $y = a \cot(bx - c) + d$


amplitude = none

period (of tan and cot) =

 $\frac{\pi}{b} = \frac{\pi}{1/3} = 3\pi$ tick marks = $\frac{\text{period}}{4} = \frac{3\pi}{4}$

tick mark calculations:	
(1) 0	(2) $0 + \frac{3\pi}{4} = \frac{3\pi}{4}$
$(3) \ \frac{3\pi}{4} + \frac{3\pi}{4} = \frac{3\pi}{2}$	$(4) \ \frac{3\pi}{2} + \frac{3\pi}{4} = \frac{9\pi}{4}$
$(5) \ \frac{9\pi}{4} + \frac{3\pi}{4} = 3\pi$	

endpoints	Solve:
$\mathbf{b}\mathbf{x} - \mathbf{c} = 0$	$bx - c = \pi$
$\frac{x}{3} = 0$	$\frac{x}{3} = \pi$
$\mathbf{x} = 0$	$x = 3\pi$
(starts)	(ends)

vertical shift = none

Example:
$$y = 2\csc\left(x + \frac{\pi}{4}\right)$$
 (Remember APTEV)

Formulas for General Form $y = a \sin(bx - c) + d$ and $y = a \cos(bx - c) + d$

amplitude = |a| = |2| = 2

 $\frac{2\pi}{b} = \frac{2\pi}{1} = 2\pi$ tick marks = $\frac{\text{period}}{4} = \frac{2\pi}{4} = \frac{\pi}{2}$ $(1) \frac{-\pi}{4}$ $(2) \frac{-\pi}{4} + \frac{\pi}{2} = \frac{\pi}{4}$ $(3) \frac{\pi}{4} + \frac{\pi}{2} = \frac{3\pi}{4}$ $(4) \frac{3\pi}{4} + \frac{\pi}{2} = \frac{5\pi}{4}$ $(5) \frac{5\pi}{4} + \frac{\pi}{2} = \frac{7\pi}{4}$

tick mark calculations:

endpointsSolve:
$$bx - c = 0$$
 $bx - c = 2\pi$ $x + \frac{\pi}{4} = 0$ $x + \frac{\pi}{4} = 2\pi$ $x = \frac{-\pi}{4}$ $x = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4}$ (starts)(ends)

vertical shift = d = none

Example: $y = \sec(2x)$ (Remember APTEV)

Formulas for General Form $y = a \sin(bx - c) + d$ and $y = a \cos(bx - c) + d$

amplitude =
$$|\mathbf{a}| = |\mathbf{l}| = 1$$

period (of sine and cosine) =
 $\frac{2\pi}{b} = \frac{2\pi}{2} = \pi$
tick marks = $\frac{\text{period}}{4} = \frac{\pi}{4}$
itick marks = $\frac{\text{period}}{4} = \frac{\pi}{4}$
itick marks = $\frac{1}{4} = \frac{\pi}{4}$
itick marks

endpoints	Solve:	
bx - c = 0	$bx - c = 2\pi$	Remember to first graph:
$2\mathbf{x} = 0$	$2x = 2\pi$	$y = \cos(2x)$
x = 0	$x = \pi$	E/I IV
(starts)	(ends)	

vertical shift = d = none