Math 1113 Precalculus	Sample Test 2 Sections 4.1 - 4.5	Name Date		
Directions. Show all work. Circle final answers.				
Find a coterminal angle for the following angle.		Find the complement angle of the following	5.	

1.
$$\frac{-3\pi}{4}$$
 2.

3.
$$\frac{9\pi}{2}$$

A circle has radius of 4 inches. Find the arc length for the following angle. $(s = r\theta)$

 $\frac{2\pi}{5}$

- 5. Evaluate the six trig functions for the following angle. $\frac{-\pi}{3}$
- 6. List which trig functions are even and which are odd.

Even:_____ Odd: _____

- Find the following values of sin45°, cos60°, 8. and tan 30°.
- Let θ be an acute angle such that $\tan \theta = 3$. Find the value of $\sec \theta$.

9. You are 20 yards from a river. Rather than walking directly to the river, you walk 40 yards along a straight path to the rivers edge. Find the acute angle θ between this path and the river's edge.

10. Given
$$\tan \theta = \frac{-5}{4}$$
 and $\cos \theta > 0$, find $\sin \theta$
and $\sec \theta$. (Hint: Draw a picture.)

11. Find the reference angle for $\theta = 340^{\circ}$ and $\theta = -\frac{3\pi}{4}$

12. Evaluate each trig function. $\cos \frac{4\pi}{3}$ and $\tan(-210^\circ)$.

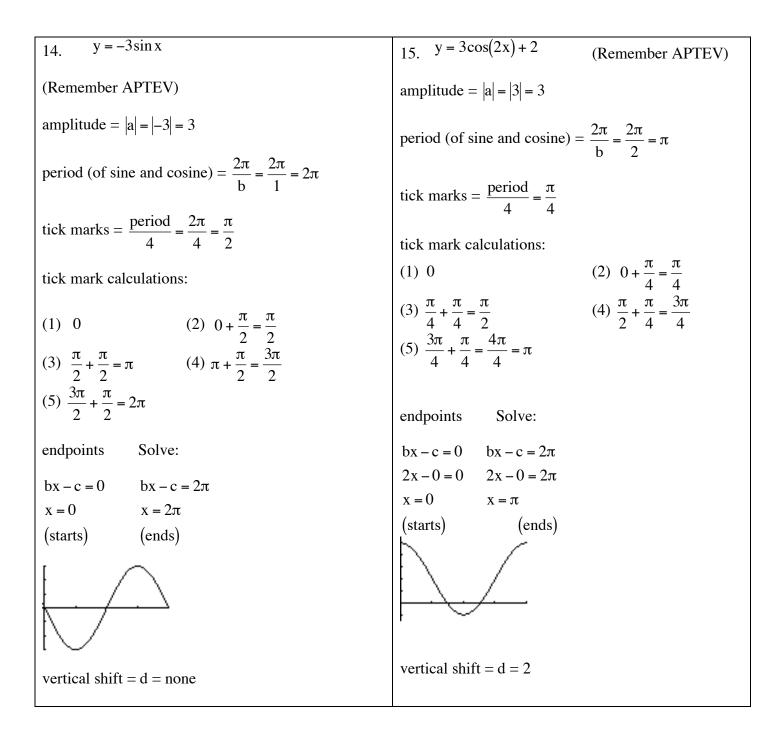
(Hint: Remember All Students Take Calculus.)

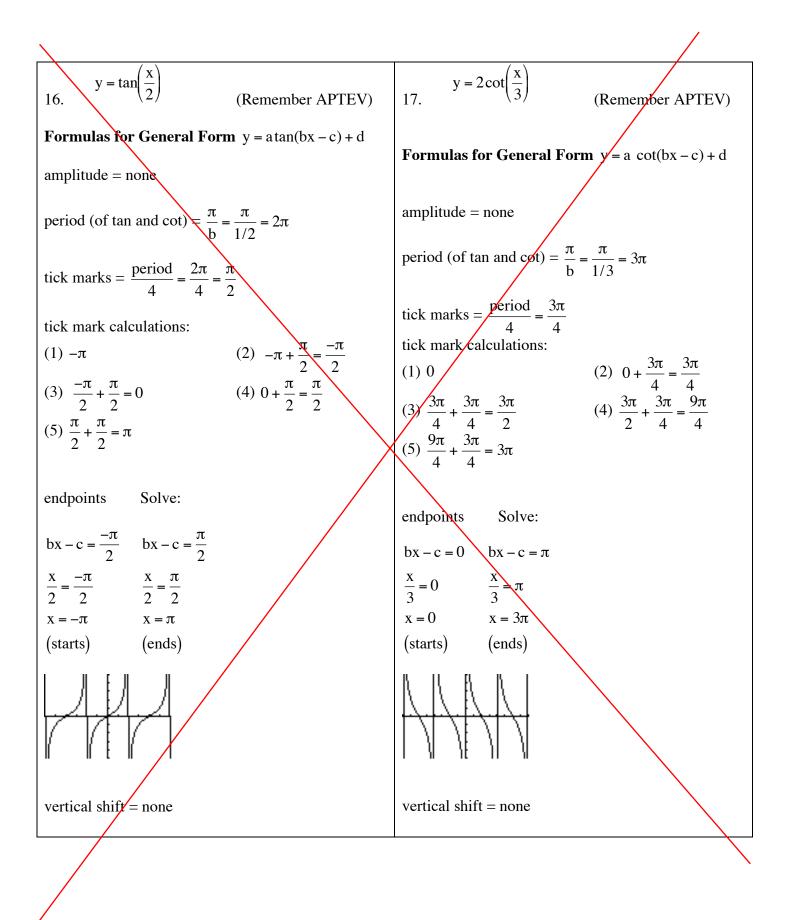
13. Let θ be an angle in Quadrant II such that $\sin \theta = \frac{1}{3}$, by using trigonometric identities find: $\cos \theta$.

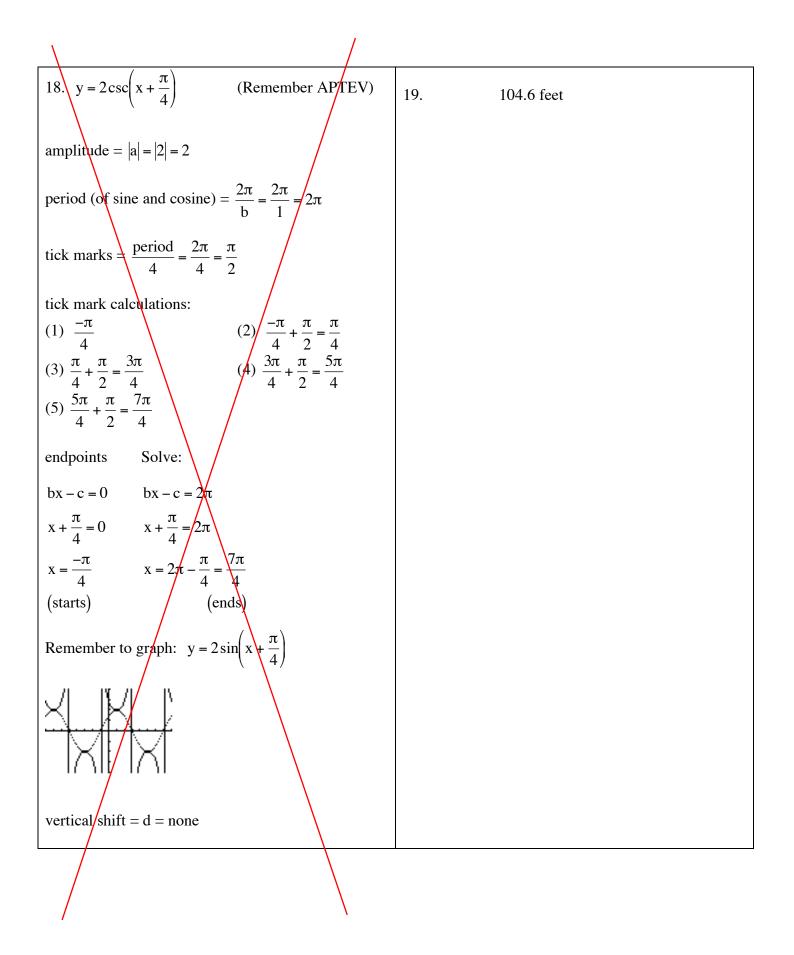
In order to receive full credit for a graph, you must do all of the following.

- 1.) Label your axes.
- 2.) Show at least one period.
- 3.) Label five ordered pairs or asymptotes (as appropriate).

14. Graph the following function: $y = -3\sin x$ 15. Graph the following function: $y = 2 + 3\cos(2x)$


		v
16	Create the following function x to $\frac{1}{2}$	Crearly the faller in a france is never 2 and *
10.	Graph the following function: $y = \tan \frac{17}{17}$	Graph the following function: $y = 2 \cot^{-1}$
	<u> </u>	3


18. Graph the following function:


19. A safety regulation states that the maximum angle of elevation for a rescue ladder is 72°. A fire department's longest ladder is 110 feet. What is the maximum safe rescue height?

Answers Sample Test 2

1.	$\frac{5\pi}{4}$ (Note: there many answers possible.)	2. $\frac{\pi}{10}$
3.	810°	$4. \qquad \frac{8\pi}{3}$
5.	$\sin\left(\frac{-\pi}{3}\right) = \frac{-\sqrt{3}}{2} \qquad \csc\left(\frac{-\pi}{3}\right) = \frac{-2\sqrt{3}}{3}$ $\cos\left(\frac{-\pi}{3}\right) = \frac{1}{2} \qquad \sec\left(\frac{-\pi}{3}\right) = 2$ $\tan\left(\frac{-\pi}{3}\right) = -\sqrt{3} \qquad \cot\left(\frac{-\pi}{3}\right) = \frac{-\sqrt{3}}{3}$	6. Even -> cos and sec Odd -> sin, tan, csc, cot
7.	$\sin 45^\circ = \frac{\sqrt{2}}{2}, \ \cos 60^\circ = \frac{1}{2}, \ \tan 30^\circ = \frac{\sqrt{3}}{3}$	8. $\sec \theta = \sqrt{10}$
9.	$\theta = 30^{\circ}$	10. $\sin\theta = \frac{y}{r} = \frac{-5}{\sqrt{41}}$ $\sec\theta = \frac{r}{x} = \frac{\sqrt{41}}{4}$
11.	$\theta = 340^{\circ} \rightarrow \theta' = 20^{\circ}$ $\theta = -\frac{3\pi}{4} \rightarrow \theta' = 45^{\circ}$	12. $\cos \frac{4\pi}{3} = \frac{-1}{2}$ (Quadrant III) $\tan(-210^\circ) = \frac{-\sqrt{3}}{3}$ (Quadrant II)
13.	$\cos\theta = \frac{-2\sqrt{2}}{3}$	

