6.3 Vectors in the Plane

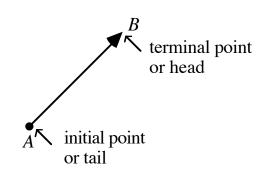
- a <u>vector</u> is a directed line segment
- the length of the line segment is the <u>magnitude</u> of the vector and the direction of the vector is measured by an angle
- the vector at the right can be denoted by \overrightarrow{AB} , \overrightarrow{V} , \overrightarrow{AB} or V
- the magnitude of this vector is denoted by $\|\overrightarrow{AB}\|$, $\|\overrightarrow{V}\|$,

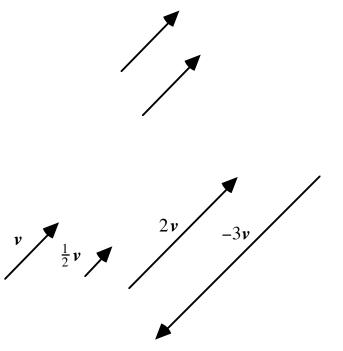
||AB|| or ||V||

- <u>equivalent vectors</u> have the same magnitude and the same direction, but location is not important

- multiplying a vector by a positive real number changes the magnitude, but not the direction of the vector

- multiplying a vector by a negative real number reverses the direction of the vector and changes its magnitude



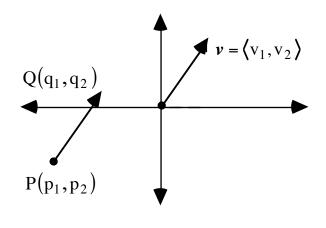


Example 1

Let **u** be represented by the directed line segment from P = (0, 0) to Q = (3, 2), and let **v** be represented by the directed line segment from R = (1,2) to S = (4,4). Show that $\mathbf{u} = \mathbf{v}$.

Component Form of a Vector

Let $P(p_1,p_2)$ be the initial point of a vector and $Q(q_1,q_2)$ its terminal point, then an equivalent vector v with initial point at the origin and terminal point $v(v_1,v_2)$ has <u>components</u> $v_1 = q_1 - p_1$ and $v_2 = q_2 - p_2$ and can be denoted $v = \langle v_1, v_2 \rangle$



Example 2 Find the component form and magnitude of a vector \mathbf{v} with initial point P(4, -7) and terminal point Q(-1, 5).

Fundamental Vector Operations - If $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ are two vectors and k is a scalar (real number), then

(1)
$$\mathbf{u} + \mathbf{v} = \langle \mathbf{u}_1, \mathbf{u}_2 \rangle + \langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \langle \mathbf{u}_1 + \mathbf{v}_1, \mathbf{u}_2 + \mathbf{v}_2 \rangle.$$

(2) $\mathbf{k}\mathbf{u} = \mathbf{k} \langle \mathbf{u}_1, \mathbf{u}_2 \rangle = \langle k \mathbf{u}_1, k \mathbf{u}_2 \rangle.$
(3) $\|\|\mathbf{v}\| = \sqrt{\mathbf{v}_1^2 + \mathbf{v}_2^2}$ (called magnitude or length)

- Example 3 Let $\mathbf{v} = \langle -2, 5 \rangle$ and $\mathbf{w} = \langle 3, 4 \rangle$, find each of the following vectors.
- a) $2\mathbf{v}$ b) $\mathbf{w} \mathbf{v}$ c) $\mathbf{v} + 2\mathbf{w}$

Unit Vectors

- a unit vector is a vector with magnitude 1
- a unit vector in the same direction as v is found by
$$\frac{\mathbf{v}}{\|\mathbf{v}\|} \operatorname{or} \left(\frac{1}{\|\mathbf{v}\|}\right) \mathbf{v}$$

Example 4 Find a unit vector in the direction of $\mathbf{v} = \langle -2, 5 \rangle$ and verify that it has magnitude of 1.

Definition of unit vectors i and j i = $\left<1,0\right>$ and j = $\left<0,1\right>$

Representation of unit vectors i and j:

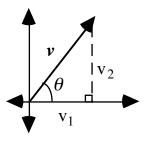
If $v = \langle v_1, v_2 \rangle$ is a vector, then $v = v_1 i + v_2 j$. (This is called a linear combination of the vectors i and j.)

Example 5 Let \mathbf{u} be the vector with initial point (2,-5) and terminal point (-1, 3). Write \mathbf{u} as a linear combination of the standard unit vectors \mathbf{i} and \mathbf{j} .

Example 6 Let $\mathbf{u} = -3\mathbf{i} + 8\mathbf{j}$ and let $\mathbf{v} = 2\mathbf{i} - \mathbf{j}$. Find $2\mathbf{u} - 3\mathbf{v}$.

Direction Angles

- the angle θ is the <u>direction</u> <u>angle</u> of v measured from the positive x-axis
- by right triangles, $\tan \theta = \frac{v_2}{v_1}$
 - (θ in the correct quadrant)



Horizontal and Vertical Components of a Vector

- let v= $\left< v_1, v_2 \right>$ be a nonzero vector
- the <u>horizontal component</u> of v is $v_1 = ||v|| \cos \theta$
- the <u>vertical component</u> of v is $v_2 = ||v|| \sin \theta$
- θ is the angle between the positive x-axis and v

<u>Note</u>: $v = ||v|| \cos \theta i + ||v|| \sin \theta j$

Example 7 Find the direction angle of each vector.

a)
$$u = 3i + 3j$$
 b) $v = 3i - 4j$