Math 1	113 Sa	ample Quiz/Test 7		Name	
Precale	culus Se	ections 6.3-6.5		Date	
Directions. Show all work. Circle final answers.					
1.	Find the component form	h and the magnitude $(1, 2)$ and	2.	Find $2\mathbf{u} - 3\mathbf{v}$	given $u = \langle 2, 1 \rangle$ and $v = \langle 1, 3 \rangle$.

Find a unit vector in the direction of the vector 4. $\mathbf{v} = 6\mathbf{i} - 2\mathbf{j}$. 3.

of the vector \mathbf{v} if the initial point is (1,3) and

terminal point is (-8, -9).

Find the <u>magnitude</u> and <u>direction</u> angle of the vector $\mathbf{v} = 6\mathbf{i} - 6\mathbf{j}$.

Find the dot product of $u = \langle 6, 1 \rangle$ and $v = \langle -2, 3 \rangle$. 5.

6. Find the angle between $\mathbf{u} = 3\mathbf{i} + 4\mathbf{j}$ and $\mathbf{v} = 0\mathbf{i} - 2\mathbf{j}$.

7. Are the vectors
$$\mathbf{u} = \left\langle \frac{3}{4}, \frac{-1}{4} \right\rangle$$
 and $\mathbf{v} = \left\langle 5, 6 \right\rangle$ orthogonal ?

8. Determine the absolute value of the following complex number and plot it.

z = -4 + 4i

9. Write the following in Trigonometric (polar) form.

 $z = \sqrt{3} + i$

10. Find $z_1 z_2$. Leave answer in trig form. $z_1 = \frac{5}{3} (\cos 140^\circ + i \sin 140^\circ),$ $z_2 = \frac{2}{3} (\cos 60^\circ + i \sin 60^\circ)$

1.
Initial point: (1, 3)
Terminal point: (-8, -9)

$$\mathbf{v} = \langle -8 - 1, -9 - 3 \rangle = \langle -9, -12 \rangle$$

 $\||\mathbf{v}\|| = \sqrt{(-9)^2 + (-12)^2} = \sqrt{225} = 15$
2.
 $2\mathbf{u} - 3\mathbf{v} = \langle 4, 2 \rangle - \langle 3, 9 \rangle = \langle 1, -7 \rangle$
3.
 $\mathbf{u} = \frac{1}{\||\mathbf{v}\||} \mathbf{v} = \frac{1}{\sqrt{6^2 + (-2)^2}} (6\mathbf{i} - 2\mathbf{j}) = \frac{1}{\sqrt{40}} (6\mathbf{i} - 2\mathbf{j})$
 $= \frac{1}{2\sqrt{10}} (6\mathbf{i} - 2\mathbf{j}) = \frac{3}{\sqrt{10}} \mathbf{i} - \frac{1}{\sqrt{10}} \mathbf{j}$
4. $\mathbf{v} = 6\mathbf{i} - 6\mathbf{j}$
 $\||\mathbf{v}\|| = \sqrt{6^2 + (-6)^2} = \sqrt{72} = 6\sqrt{2}$
 $\tan \theta = \frac{-6}{6} = -1$
Since \mathbf{v} lies in Quadrant IV, $\theta = 315^\circ$.
5. $\mathbf{u} = \langle 6, 1 \rangle, \ \mathbf{v} = \langle -2, 3 \rangle$
 $\mathbf{u} \cdot \mathbf{v} = 6(-2) + 1(3) = -9$

Formula Sheet Quiz 7

- (1) $\mathbf{u} + \mathbf{v} = \langle \mathbf{u}_1, \mathbf{u}_2 \rangle + \langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \langle \mathbf{u}_1 + \mathbf{v}_1, \mathbf{u}_2 + \mathbf{v}_2 \rangle.$
- (2) $k \mathbf{u} = k \langle \mathbf{u}_1, \mathbf{u}_2 \rangle = \langle k \mathbf{u}_1, k \mathbf{u}_2 \rangle.$
- (3) $\|\mathbf{v}\| = \sqrt{\mathbf{v_1}^2 + \mathbf{v_2}^2}$ (called magnitude or length)
- a <u>unit vector</u> is a vector with magnitude 1
- a unit vector in the same direction as \mathbf{v} is found by $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ or $\frac{1}{\|\mathbf{v}\|}$ v

 $i = \langle 1, 0 \rangle$ and $j = \langle 0, 1 \rangle$

If $v = \langle v_1, v_2 \rangle$ is a vector, then $v = v_1 i + v_2 j$.

Direction Angles

- the angle θ is the <u>direction angle</u> of *v*
- by right triangles, tan $=\frac{V_2}{V_1}$

(θ in the correct quadrant)

<u>Note</u>: $\mathbf{v} = ||\mathbf{v}|| \cos \theta \mathbf{i} + ||\mathbf{v}|| \sin \theta \mathbf{j}$

The dot product of $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle = \mathbf{u} \quad \mathbf{v} = u_1 v_1 + u_2 v_2$

If is the angle between two nonzero vectors **u** and **v**, then $\cos = \frac{\mathbf{u} \ \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \quad \text{where is } 0 \quad \text{and } \mathbf{u} \ \mathbf{v} \text{ is a dot product.}$

The **absolute value** of the complex number a + bi is $|z| = |a + bi| = \sqrt{a^2 + b^2}$.

The complex number z = a + bi is written in polar form as $z = r(\cos + i\sin)$ where $a = r\cos$, $b = r\sin$, $r = \sqrt{a^2 + b^2}$ and $\tan = \frac{b}{a}$. with 0 < 2

Let $z_1 = r_1(\cos_1 + i\sin_1)$ and $z_2 = r_2(\cos_2 + i\sin_2)$ be two complex numbers.

$$z_{1}z_{2} = r_{1}r_{2}[\cos(t_{1} + t_{2}) + i\sin(t_{1} + t_{2})]$$
$$\frac{z_{1}}{z_{2}} = \frac{r_{1}}{r_{2}}[\cos(t_{1} - t_{2}) + i\sin(t_{1} - t_{2})]$$