Linear Growth
If a quantity starts at size Pp and grows by d every time period, then the quantity after n
time periods can be determined using either of these relations:

Recursive form:

Pn =Pn-]+d
Explicit form:

In this equation, d represents the common difference — the amount that the population
changes each time 7 increases by 1

Exponential Growth

If a quantity starts at size Py and grows by R% (written as a decimal, r) every time
period, then the quantity after n time periods can be determined using either of these
relations:

Recursive form:
Pn = (1+I’) Pn-]

Explicit form:
P,=(+r)" Py or equivalently, P, = Py (1+7)"

We call r the growth rate.
The term (1+7) is called the growth multiplier, or common ratio.

Logistic Growth

If a population is growing in a constrained environment with carrying capacity K, and
absent constraint would grow exponentially with growth rate 7, then the population
behavior can be described by the logistic growth model:
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