Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

```
Given f(x) = 9x and g(x) = 2x^2 + 3, find

(a) (f \circ g)(4) (b) (g \circ f)(2) (c) (f \circ f)(1) (d) (g \circ g)(0)

(a) What is (f \circ g)(4)?

(f \circ g)(4) = [

(b) What is (g \circ f)(2)?

(g \circ f)(2) = [

(c) What is (f \circ f)(1)?

(f \circ f)(1) = [

(d) What is (g \circ g)(0)?

(g \circ g)(0) = [
```


Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

For f(x) = 4x and $g(x) = \frac{1}{4}x$, find $(f \circ g)(x)$ and $(g \circ f)(x)$. Then determine whether $(f \circ g)(x) = (g \circ f)(x)$.

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

6.

For f(x) = 4x - 2 and $g(x) = \frac{1}{4}(x+2)$, find $(f \circ g)(x)$ and $(g \circ f)(x)$. Then determine whether $(f \circ g)(x) = (g \circ f)(x)$.

What is $(f \circ g)(x)$? $(f \circ g)(x) =$ What is $(g \circ f)(x)$? $(g \circ f)(x) =$ Does $(f \circ g)(x) = (g \circ f)(x)$? O Yes O No

O Yes

Page 3 of 15

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

Find the inverse of the one-to-one function. State the domain and range of the inverse function.

 $\{(0, -5), (-13, 5), (9, 2), (-5, -3), (5, -11)\}$

Which of the following is the inverse function?

- $\bigcirc \{(5, -11), (-5, -3), (9, 2), (-13, 5), (0, -5)\}$
- $\bigcirc \{(-5,5), (5,-5), (2,9), (-3,-13), (-11,0)\}$
- \bigcirc {(0,5), (13, -5), (-9, -2), (5,3), (-5,11)}
- $\bigcirc \{(-5,0), (5,-13), (2,9), (-3,-5), (-11,5)\}$

What is the domain of the inverse function?

- {-5, 5, 2, -3, -11}
 {-11}
 {0, -13, 9, -5, 5}
- O {0}

7.

What is the range of the inverse function?

- {-11}
- {0}
- \bigcirc {-5, 5, 2, -3, -11}
- 0, -13, 9, -5, 5

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

	2	
2	ĸ	
•	9	•

Consider the functions $f(x) = x^3 - 9$ and $g(x) = \sqrt[3]{x+9}$.

O No

Yes

0

(a) Find f(g(x)).
(b) Find g(f(x)).
(c) Determine whether the functions f and g are inverses of each other.

(a) What is $f(g(x))$?
f(g(x)) = (Simplify your answer.)
Give any values of x that need to be excluded from $f(g(x))$.
$\mathbf{x} \neq \square$ (Type N if no values should be excluded from the domain. Use a comma to separate answers as needed.)
(b) What is $g(f(x))$?
g(f(x)) = (Simplify your answer.)
Give any values of x that need to be excluded from $g(f(x))$.
$x \neq $ (Type N if no values should be excluded from the domain. Use a comma to separate answers as needed.)
(c) Are the functions f and g inverses of each other? Choose the correct answer below.

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

10. The function f(x) = 5x is one-to-one. (a) Find the inverse of f. (b) State the domain and range of f. (c) State the domain and range of f^{-1} . (d) Graph f, f^{-1} , and y = x on the same set of axes. (a) What is the inverse of f? $f^{-1}(x) =$ (Simplify your answer. Use integers or fractions for any numbers in the expression.) (b) State the domain and range of f. The range of f is $\{y \mid \mid \}$. (Type an inequality or a compound inequality. Use integers or fractions for any numbers in the expression. Type R if the answer is all real numbers.) (c) State the domain and range of f^{-1} . The domain of \mathbf{f}^{-1} is $\{\mathbf{x} \mid \mathbf{y}\}$. The range of \mathbf{f}^{-1} is $\{\mathbf{y}| \mid \}$. (Type an inequality or a compound inequality. Use integers or fractions for any numbers in the expression. Type R if the answer is all real numbers.) (d) Graph f, f^{-1} , and y = x on the same set of axes. Choose the correct graph below. OA. ОВ. OC. OD.

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

11. The function f(x) = 5x + 1 is one-to-one. (a) Find the inverse of f. (b) State the domain and range of f. (c) State the domain and range of \mathbf{f}^{-1} . (d) Graph f, f^{-1} , and y = x on the same set of axes. (a) What is the inverse of f? $f^{-1}(x) =$ (Simplify your answer. Use integers or fractions for any numbers in the expression.) (b) State the domain and range of f. The range of f is $\{y \mid \mid \}$. (Type an inequality or a compound inequality. Use integers or fractions for any numbers in the expression. Type R if the answer is all real numbers.) (c) State the domain and range of f^{-1} . The domain of \mathbf{f}^{-1} is $\{\mathbf{x} \mid \mathbf{y}\}$. The range of \mathbf{f}^{-1} is $\{\mathbf{y}| \}$. (Type an inequality or a compound inequality. Use integers or fractions for any numbers in the expression. Type R if the answer is all real numbers.) (d) Graph f, f^{-1} , and y = x on the same set of axes. Choose the correct graph below. OA. OC. OD. ОВ.

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

Solve the equation.

$$\left(\frac{3}{2}\right)^{x} = \left(\frac{27}{8}\right)^{x}$$

x =

(Simplify your answer. Type an integer or a fraction.)

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

16.	Solve the equation.	
	$4^{3x+1} = 64$	
	x = (Simplify your answer. Type an integer or a fraction. Use a comma to separate answers as needed.)	
17.	Change the exponential expression to an equivalent expression involving a logarithm. $8.2 = a^6$	
	The equivalent logarithmic expression is . (Type an equation.)	
18.	Change the logarithmic expression to an equivalent expression involving an exponent. $\log_2 8 = x$	
	The equivalent exponential expression is . (Type an equation.)	
19.	Find the exact value of the logarithm without using a calculator. log 749	
	log ₇ 49 =	
20.	Find the domain of the function. $f(r) = \ln (r - 1)$	
	I(X) = III(X - I)	
	The domain of f is . (Type your answer in interval notation. Type R if the answer is all real numbers.)	

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

The graph of a logarithmic function is given. Match the graph to its function.	$\begin{array}{c} 3 \\ -4 \\ -3 \end{array}$	
Which function matches the graph?		
$\bigcirc A. y = \log_4 x$	\bigcirc B. y = 1 - log ₄ x	
\bigcirc C. y = - $\log_4 x$	\bigcirc D. y = log ₄ (x - 1)	
$\bigcirc E. y = \log_4 x - 1$	\bigcirc F. y = log ₄ (-x)	
\bigcirc G. y = -log ₄ (-x)	\bigcirc H. y = log ₄ (1-x)	

Solve the equation.

24. Solve the equation. $\log_2(4x+9) = 3$ x = (Type an integer or a simplified fraction.)

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

25. Solve the equation. $e^{8x} = 7$ x = (Type an exact answer.)

26. Use properties of logarithms to find the exact value of the expression. Do not use a calculator.

log ₆24 - log ₆4

log ₆24 - log ₆4 =

27. Suppose that ln 2 = s and ln 11 = t. Use properties of logarithms to write the logarithm in terms of s and t.
In 5.5

28. Write the expression as a sum and/or difference of logarithms. Express powers as factors. $\log_2(8x)$ $\log_2(8x) =$ (Type an exact answer in simplified form.)

29.	Write the expression as a single logarithm.
	$5 \log_3 u + 9 \log_3 v$
	$5 \log_3 u + 9 \log_3 v = \log_3 ($

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

30. Write the expression as a single logarithm. $\log_{3}(x^{2}-64) - 9 \log_{3}(x+8)$ $\log_{3}(x^{2}-64) - 9 \log_{3}(x+8) = \log_{3}$ (Simplify your answer.)

31.

Use the change-of-base formula and a calculator to evaluate the logarithm.

 $\log_7 42 =$ (Do not round until the final answer. Then round to the nearest thousandth as needed.)

32. Use the change-of-base formula and a calculator to evaluate the logarithm. Round your answer to three decimal places.

log 1/5 8

 $\log_{1/5} 8 \approx$ (Do not round until the final answer. Then round to three decimal places as needed.)

33.

Solve the following logarithmic equation.

 $\log_2(5x) = 4$

x =

(Type an exact solution, using radicals and log functions as needed. Use a comma to separate answers as needed. Type N if there is no solution.)

34.

Solve the following logarithmic equation.

 $2 \log_3 x = -\log_3 9$

x =

(Type an exact solution, using radicals and log functions as needed. Use a comma to separate answers as needed. Type N if there is no solution.)

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3
Date:	Course: Math 1111	
Time:	Book: Sullivan: College Algebra, 8e	

Solve the following logarithmic equation.

 $\log_{5}(x+131) + \log_{5}(x+11) = 4$

(Type an exact solution, using radicals and log functions as needed. Use a comma to separate answers as needed. Type N if there is no solution.)

$$6^{1-9x} = 7^x$$

x =

(Type an exact solution, using radicals and log functions as needed. Use a comma to separate answers as needed. Type N if there is no solution.)

Studen Date: Time:	t:	Instructor: Keith Barrs Course: Math 1111 Book: Sullivan: College Algebra, 8e	Assignment: Sample Test 3
1.	315 651 81 21		
2.	16 - 122 1 - 12		
3.	$4\sqrt{7}$ $14\sqrt{2}$ $2\sqrt{2}$ 0		
4.	x x the first choice		
5.	x x the first choice		
6.	the first choice		
7.	the fourth choice the first choice the fourth choice		
8.	x N x N the second choice		
9.	А		

Student Date:	t:	Instructor: Keith Barrs	Assignment: Sample Test 3
Time:		Book: Sullivan: College Algebra, 8e	
10.	x 5 R R R R D		
11.	$\frac{x}{5} - \frac{1}{5}$ R R R R R A		
12.	G		
13.	B (-∞,∞) (5,∞) 5		
14.	A R (6,∞) 6		
15.	3		
16.	$\frac{2}{3}$		
17.	$6 = \log_a 8.2$		
18.	$8 = 2^{x}$		
19.	2		
20.	(1,∞)		
21.	8.745		

Stude Date:	ent:	Instructor: Keith Barrs Course: Math 1111	Assignment: Sample Test 3
Time	:	Book: Sullivan: College Algebra, 8e	
22.	Н		
23.	81		
24.	$-\frac{1}{4}$		
25.	<u>ln 7</u> 8		
26.	1		
27.	t-s		
28.	$3 + \log_2 x$		
29.	u ⁵ v ⁹		
30.	$\frac{x-8}{(x+8)^8}$		
31.	1.921		
32.	- 1.292		
33.	<u>16</u> 5		
34.	$\frac{1}{3}$		
35.	- 6		
36.	<u>ln</u> 7 <u>ln</u> 3		
37.	$\frac{\ln 6}{9 \ln 6 + \ln 7}$		