§4.4 Polynomial and Rational Inequalities

Steps for Solving Polynomial and Rational Inequalities

STEP 1: Write the inequality so that a polynomial or rational expression f is on the left side and zero is on the right side in one of the following forms:

f(x) > 0 $f(x) \ge 0$ f(x) < 0 $f(x) \le 0$

For rational expressions, be sure that the left side is written as a single quotient.

- **STEP 2:** Determine the numbers at which the expression f on the left side equals zero and, if the expression is rational, the numbers at which the expression f on the left side is undefined.
- **STEP 3:** Use the numbers found in Step 2 to separate the real number line into intervals.
- **STEP 4:** Select a number in each interval and evaluate f at the number.
 - (a) If the value of f is positive, then f(x) > 0 for all numbers x in the interval.
 - (b) If the value of f is negative, then f(x) < 0 for all numbers x in the interval.

If the inequality is not strict, include the solutions of f(x) = 0 in the solution set.

Rational Inequalities:

Note:- **NEVER** multiply both sides of an inequality by a variable expression!!

- You cannot lose the denominator in quotients.
- Always remember the restriction that the denominator cannot be zero.

Examples Solve. a.) $x^4 \le 4x^2$

b.)
$$x^4 > x$$

c.)
$$\frac{(x+3)(2-x)}{(x-1)^2} > 0$$

$$d.) \quad \frac{4x+5}{x+2} \ge 3$$